REGULATORY AMENDMENT

TO THE

REEF FISH FISHERY MANAGEMENT PLAN

TO SET 1996 RED SNAPPER

TOTAL ALLOWABLE CATCH

(Includes Environmental Assessment, and Regulatory impact Review)

DECEMBER 1995

Gulf of Mexico Fishery Management Council
Lincoin Center, Suite 331
5401 West Kennedy Boulevard Tampa, Florida 33609

813-228-2815

Table of Contents

1. INTRODUCTION 1
2. HISTORY OF MANAGEMENT 1
3. PURPOSE AND NEED FOR ACTION 6
4. PROPOSED ACTIONS
5. MANAGEMENT OBJECTIVE AND OPTIMUM YIELD 8
Optimum Yield 8
Definition of Civerfishing 8
6. REEF FISH FRAMEWORK PROCEDURE AS SPECIFIED IN THE FMP s
7. WHAT IS SPAWNING POTENTIAL RATIO (SPR)?
8. STATUS OF RED SNAPPER STOCK
New Information12
Harvest Trends 13
Recruiment Trends 16
Generation Time and Recovery Target Date ${ }^{-}$
Fishing Mortality Rates
Spawning Potential Ratio (SPR) Estimates and ABC Range is
9. CHARACTERIZATION OF THE FISHERY AND PARTICIPANT GROUPS 18
General Description : 2
Recreational and For-Hire Sectors ; J
Commercial Sector
10. MANAGEMENT ALTERNATIVES AND REGULATORY IMPACT REVIEW
Introduction
Proposed Alternatives
Rationale
Biological Impacts
Economic Impacts
Rejected Alermaives
Raionale
Binogical Impacts
Economic Impacts
Private and Public Costs
Summary and Net Impact of Proposed Action
Determination of a Significant Regulatory Action
Initial Regulatory Fexibility Analysis
11. ENVIRONMENTAL ASSESSMENT
Environmental Consequences 40
Finding of No Significant Envirormental Impact 40
12. OTHER APPLICABLE LAW 42
Habitat Concerns 42
Vessel Safery Considerations 42
Coastal Zone Consistency 42
Paperwork Reduction Act 42
Federalism 42
13. SCIENTIFIC RESEARCH AND DATA NEEDS 43
14. REFERENCES 45
15. PUBLIC REVIEW 45

Abbreviations Used in This Document

ABC	Alowable Biological Catch
EEZ	Exclusive Economic Zone
F	Rate of instantaneous fishing mortality
FMP	Fishery Management Plan
GMFMC	Gulf of Mexico Fishery Management Council
M	Rate of instantaneous natural mortality
NMFS	National Marine Fisheries Service
OY	Opimum Yield
Plan	Reef Fish FMP for the Gulf of Mexico
RD	Regional Director (NMFS Southeast Regional Office)
RFA	Regulatory Fexibility Act of 1980
RFSAP	Reef Fish Scientific Ascessment Panel
RIR	Regulatory Impact Review
RSAP	Red snapper Advisory Panel
SEAMAP	Southenat Area Monitoring and Ascessment Program (fishery-independent data program)
SEFC or S	FSC Southear Fisheries Center, Miami, Forida (NMFS Southeast Regional Office)
SEP	Socio-conomic Panel
SPR	Spawring Potential Ratio
SSBR	Spawning Stock Biomars Ratio (an older term for SPR)
TAC	Toal Allowible Cacch
VPA	Virtual Population Analysis (a method for estimating mortality rates and number of fish at age from catch-at-age dan)
YPR	Yield Per Recruit

1. INTRODUCTIONa

This is a regulatory amendment, sometimes known as a framework procedure amendment, to the Reef Fish Fishery Management Plan. A regulawry amendment is used to implement changes to the Total Allowable Catch (TAC) for a reef fish stock or sock complex, along with any changes to fishing regulations (size limis. bag and trip limits. etc.) that are needed to achieve the TAC. The TAC is a level of fishing intended to obtain Optimum Yield and to prevent overfishing, or to follow a recovery plan when a stock is overrished. Regulatory amendments differ from a plan amendments in that they are used to set TACs and associated fishing regulations, whereas plan amendments are used to make changes in the basic policies and procedures defined in a fishery management plan. A regulatory amendment is limited in its scope and follows a speciri: procedure which is described later in this document.

This regulatory amendment proposes changes to the red snapper TAC for 1996. The following informanon is intended 10 guide readers who are looking for specific information within the document (refer to the Tabie of Contents for page mumbers). The reasons why changes are being considered is discussed in the section ated "Purpuse and Need for Action". The proposed 1996 TAC and other actions are summarized under "Proposed Actions". A brief overview of the current stock assessment and findings of the Reef Fish Stock Assessment Panel is in "Starus of Red Snapper Stock". A detailed discussion of the rationale, biological impais. socioeconomic impacts, and regulatory impacts of both the proposed and rejected alternatives is in "Management Alternatives and Regulatory Impact Review". The "History of Management" provides a summary of all changes to the Reef Fish FMP since it was implemented.

2. HISTORY OF MANAGEMENTa

The Reef Fish Fishery Maragement Plan was implemented in November 1984. The regulations, designed to rebuild declining reef fish stocks, included: (1) prohibitions on the use of fish traps, roller trawls, and powerhead-equipped spear guns within an inshore stressed area; (2) a minimum size limit of 13 inches wal length for red srapper with the exceptions that for-hire boats were exempted until 1987 and each angler could keep 5 undersize fish; and, (3) data reporting requirements.

The National Marine Fisheries Service (NMFS) has collected commercial landings data since the early 1950's. recreational harvest data since 1979, and in 1984 initiated a dockside interview program to collect morea demiled data on commercial harver. The first red snapper assessment in 1988 indicated that red snapper wasa significantly overfished and that reductions in fishing mortality rates of as much as 60 to 70 percent werea necessary to rebuild red snapper to a recommended 20 percent spawning stock potential ratio (SPR - Sera Section 5 below). The 1988 assessment also idenified shrimp trawl bycatch as a significant source inta mortality.a

Amendment 1 to the Reef Fish Fishery Management Plan, implemented in 1990, set as a primary objecovea of the FMP the stabilization of long term population levels of all reef fish species by establishing a survirala rate of biomass into the stock of spawning age to achieve at least 20 percent spawning stock biomass pera recruit (SSBR), relaive to the SSBR that would occur with no fishing. It set a red snapper 7 fish recreanonuia bag limit and 3.1 million pound commercial quota that together were to reduce fishing mortality by 20 percenta and begin a rehuilding program for that srock. This amendment also established a 5 fish recreational bag limua
and 11.0 million pound commercial quota ${ }^{1}$ for groupers, with the commercial quota subdivided into a 9.2 million pound shallow-water quota and a 1.8 million pound deep-water quota. A framework procedure for specification of TAC was created to allow for annual management changes, and a target date for achieving the 20 percent SSBR goal was set at January 1, 2000. This amendment also established a longline and buoy gear boundary inshore of which the directed harvest of reef fish with longlines and buoy gear was prohibited and the retention of reef fish captured incidentally in other longline operations (e.g. shark) was limited to the recreational bag limit. Subsequent changes to the longline/buoy boundary could be made through the framework procedure for specification of TAC.

Amendment 2, implemented in 1990, prohibited the harvest of jewfish to provide complete protection for this species in federal waters in response to indications that the population abundance throughout its range was greatly depressed. This amendment was initially implemented by emergency rule.

In November, 1990, NMFS announced that anyone entering the commercial reef fish fishery in the Gulf of Mexico and South Allantic after a control date of November 1, 1990 may not be assured of future access to the reef fish fishery if a management regime is developed and implemented that limits the number of parcicipants in the fishery. The purpose of this announcement was to establish a public awareness of potential eligibility criteria for fuure access to the reef fish resource, and does not prevent any other date for eligibility or other method for controlling fishing effort from being proposed and implemented.

At the direction of the Council, the Reef Fish Scientific Assessment Panel (RFSAP) met in March 1990 and reviewed the 1990 NMFS Red Smpper Stock Asrensment. The recommendation of the panel at that ime was to close the directed fishery because the Allowable Biological Catch (ABC) was being harvested as bycatch of the strinup trawl fishery. No viable alternatives were identified that would achieve the 20 percent SPR goal by the year 2000 without closure of the directed fishery; because no means existed for reducing trawl bycatch. As a result, Amendment 3, implemented in July 1991, provided additional flexibility in the annual framework procedure for specifying TAC by allowing the urget date for rebuilding an overfished stock to be changed depending on changes in scientific advice, except that the rebuilding period cannot exceed 1.5 times the generation time of the species under consideration. It revised the FMP's primary objective, definitions of optimum yield and overfishing and framework procedure for TAC by replacing the 20 percent SSBR target with 20 percent spawning potential ratio (SPR). The amendment also transferred speckled hind from the shallow-water grouper quota category to the deep-water grouper quota category and established a new red snapper arget year of 2007 for achieving the 20 percent SPR goal.

During 1991 several regulatory amendments were implemented to adjust the TACs and quotas for reef fish
A 1991 regulatory amerdmere rived the 1991 quota for shallow-water groupers to 9.9^{2} million pounds This action was aken to provide the commercial fishery an opportunity to harvest 0.7 million pounds that werr umbarvested in 1990 due to an early closure of the fishery in 1990. NMFS had projected the

[^0]9.2 million pound quou to be reached on November 7, but subsequent data showed that the acraal harvest was 8.5 million pounds.

A 1991 regulatory amendment set the red snapper TAC at 4.0 million pounds to be allocated with a commercial quora of 2.04 million pounds and a 7 fish recreational daily bag limit (1.96 million pound allocation) beginning in 1991. This amendment also contained a proposal by the Council werfect a 50 percent reduction of red snapper bycatch in 1994 by the offshore EEZ shrimp trawler fleet. to oceur through the mandatory use of finfish excluder devices on shrimp trawls, reductions in fishing effort. area or season closures of the shrimp fishery, or a combination of these actions. This combination of measures was projected to achieve a 20 percent SPR by the year 2007. The 2.04 million pound quiota was reached on Augur 24, 1991, and the red snapper fishery was closed to further commercial harves: in the EEZ for the remainder of the year. In 1992, the commercial red snapper quota remained at 2 04 million poizs. However, extremely heavy harvest rates resulted in the quota being filled in just 5 days, and the commercial red snapper fishery was closed on February 22, 1992.

A 1991 regulatory amendment set the 1992 commercial quota for shallow-water groupers at 9.8 million pounds, which was 1.6 million pounds higher than the adjusted 1991 base level quota of 8.2 millinn pounds.

An emergency rule, implemented in 1992 by NMFS at the request of the Council, reopened the red snapre: fishery from April 3, 1992 through May 14, 1992 with a 1,000 pound trip limit. This rule was implementes to alleviare economic and social upheavals that occurred as a result of the 1992 red snapper commercial quoua being rapidly filled. Although this emergency rule resulted in a quota overrun of approximately 600.000 pounds, amalysis by NMFS biotogiss derermined that this one time overrun would not prevent the red snapper stock from atraining its target SPR.

Amendment 4, implemented in May 1992, established a moratorium on the issuance of new reef fish perm:: for a maximum period of three years. The moratorium was created to moderate short term future incredw in fisting effor and to attempt to strbilize fishing mortality while the Council considers a more comprehenuseffort limitation program. It allows the transter of permis berween vessels owned by the permitree or beruceindivituals when the permitted vessel is transterred. Amendment 4 also changed the time of the year that TA: is specified from April to August and included additional species in the reef fish management unit.

Amendment 5, implemented in February 1994, established restrictions on the use of fish traps in the Gu: Mexico EEZ, implemented a chree year moratorium on the use of fish traps by creating a rish \because, endorsement and issuing the endorsement only to fishermen who had submitted logbook records of ree: landings from fist traps berween Jannary 1, 1991 and November 19, 1992, created a special management (SMZ) with gear resurictions off the Alabama coast, created a framework procedure for establishing :SMZ's, required chat all finfish except for oceanic migratory species be landed with head and fins ans established a schedule to grachally raise the minimum size limit for red snapper to 16 inches over a per. . five years, and closed the region of Riley's Hump (near Dry Tortugas, Florida) to all fishing during Md. June to protect mutron snapper spawning aggregations.

A 1992 Regulatory Amendment set the 1993 red snapper TAC at 6.0 million pounds to be allocated commercial quota of 3.06 million pounds and a recreational allocation of 2.94 million pounds implemented by a 7 fish recreational daily bag limit). The amendment also changed the target year 1 ad . a 20 percent red srapper SPR from 2007 to 2009, based on the Plan provision that the rebuilding perlu
be for a time span not exceeding 1.5 times the potential generation time of the stock and an estimated red snapper generation time of 13 years (Goodyear 1992).

An Emergency Rule effective December 30, 1992 created a red snapper endorsement to the reef fish permit for the start of the 1993 season. The endorsement was issued to owners or operators of federally permitred reef fish vessels who had annual landings of at least 5,000 pounds of red snapper in two of the three years trom 1990 trought 1992. For the duration of the emergency rule, while the commercial red snapper fishery is open permitrees with red snapper endorsements are allowed a 2,000 pound possession limit of red snapper, and permimes without the endorsement are allowed 200 pounds. This emergency action was initially effective for 90 days, and was extended for an additional 90 days with the concurrence of NMFS and the Council. A related emergency rule delayed the opening of the 1993 commercial red snapper season until February 16 to allow time for NMFS to process and issue the endorsements. Note: A legal challenge to the red snapper endorsemens emergency rule was filed in U.S. Distria Coun. Corpus Chrissi. Texas on January 21, 1993. Ther ourcome of this challenge has not been determined as of the writing of this drafi.

Amendment 6, implemented in June, 1993, extended the provisions of the emergency rule for red snapper endorsements for the remainder of 1993 and 1994, unless replaced sooner by a comprehensive effort limitaon program. In addition, it allowed the trip limits for qualifying and non-qualifying permitres to be changed under the framework procedure for specification of TAC.

A propuced 1993 Regulatory Amendment that would have moved the longline and buoy gear restricted area brundary off centril and south-central Florida inshore from the 20 fathom isobath to the 15 fathom isobath for a one-year period tegiming Janary 1, 1994 was withdrawn by the Council in January 1994. This regulatory amendmers had been proposed as an experimental fishery during which ime surdies would be carried out to examine the biological, social and economic impacts of the action. The action was proposed in response to requests from longline fishermen for increased access to areas with switable grouper habiat, and in onsideration of a red grouper srock asessment which indicated that species was not overfished and that the commercial quoe had never been filled. The Council withdrew the proposal amid concerns that it would lead wa quoe closure and a concern by the NMFS Southeast Fisheries Science Center that there were inadequate experimental controls to properly evaluate the impact of the action.

A 1993 Regulatory Amendmens set the opening date of the 1994 commercial red snapper fishery as February 10, 1994, and resuricted commercial vessels to landing no more than one trip limit per day. The purpose of this amendment was to facilitue enforcement of the trip limits, minimize fishing during hazardous winter weather, and ensure that the commercial red snapper fishery is open during Lent, when there is increased demand for seafood. The Toul Allowable Catch (TAC) was retained at the 1993 level of 6 million pounds. with a 3.06 million pound commercial quou and 2.94 million pound recreational allocation. The shallow water group-r was also evaturad and was revined at it's status quo level of 15.1 million pounds (9.8 million pound commeril quog) and 20 inch ionl length size limit for gag, red, Nassau, yellowfin and black grouper

Amendment 7, implemented in February 1994, established reef fish dealer permitring and record keeping requirements, allowed transer of fish trap permits and endorsements between immediate family members during the fish trap permit morabrium, and allowed transfer of other reef fish permits or endorsements in the evens of the death or diability of the person who was the qualifier for the permit or endorsement. A proposed provision of chis amendment that would have required permitted vessels to sell harvested reef fish only w permitred dealers was disapproved by the Secretary of Commerce and was not implemented.

Amendment 8 has been approved for implementation in 1996. It will manage effort in the commercial red snapper fishery by restricting access to the fishery through an individual transterable quota system. Due to concerns by commercial fishermen about the impact of the proposed measures, the Council delaved consideration of this amendment unil information could be collected (under Amendment 9) to determune eligibility and initial allocations to individual fishermen.

Amendment 9. implemented in July 1994, provided for collection of red snapper landings and eligibility data from commercial tishermen for the years 1990 through 1992. The purpose of this data collection is to evaluate the initial impacts of the limited access measures being considered under Amendment 8 and to idenary fishermen who may qualify for initial participation under a limited access system. This amendment also extended the reef fish permit moratorium and red snapper endorsement system through as late as December 31, 1995, in order to continue the existing interim management regime unil longer term measures ean be implemented.

Withdrawn Amendment 10 would have extended the validity of additional fish trap endorsements for the duration of the fish trap moratorium that was implemented under Amendment 5. These additional endorsements were to have been issued under an emergency rule, requested in March 1994, to alleviate economic hardships after the Council heard from fishermen who entered the fish trap fishery arier the November 19, 1992 cutoff date and stated that they were unaware of the impending moratorium. The Council rejected the proposed amendment in May 1994 after NMFS stated that it had notified fishermen of the pending moratorium and fish trap endorsement criteria during the time between Council final action and NMFS implementation if they asked about fish trap rules or if they requested application materials and NMFS was aware that it was for purposes of entering the fish trap fishery. The Council also considered arguments that the change in qualifying criteria circumvented the intent of the fish trap moratorium to halt expansion of the fish trap fishery at the November 19, 1992 level. After the Council rejected Amendment 10, NMFS subsequently rejected the emergency request.

An October 1994 proposed regulatory amendment retained the 6 million pound red snapper TAC and commercial trip limits and set the opening date of the 1995 commercial red snapper fishery as February 24. 1995. However, because the recreational sector exceeded its 2.94 million pound red snapper allocation each year since 1992, this regulatory amendment reduced the daily bag limit from 7 fish to 5 fish, and increased the minimum size limit for recreational fishing from 14 inches to 15 inches.

Amendment 11 has been partially approved by NMFS for implementation in 1996. This amendment espoblistes allowable stes provisions for reef fish harvested in the EEZ, provides additional transferability for permits and entorements, onninus the reef fish vessel permit moratorium for up to an additional five years. allows reef fish vewal permits io be erasterred benween vessel owners under the moratorium without requiring the transter of the permited venel, and establishes a permit for vessels to operate as reef fish charter or head boas in the EEZ. Disupproved meares included a new definition of Opimum Yield based on the $F_{0,1}$ fishing mortality rate, an alloware for the Council to set TAC in excess of ABC for species that are not overfished and an erearion of the recovery period for red snapper from $1 / 2$ to 2 generation times. The Council, upon review of the diepproved mesires, voed to resubmit an Opoimum Yield definition based on 30 percent SPR. and resubmit an allowane for TAC to exceed ABC subject to a 10 percent maximum excess harvest and twin year maximum duration limitation. Resubmission of the disapproved measures is currently in preparation.

Amendment 12 has been approved by the Council and is currently in preparation for submission to NMFS This amendment proposes to combine greater amberjack, lesser amberjack and banded rudderfish into an aggregare 1 fish bag limit and 28 inch fork length recreational size limit while retaining a commercial 36 inch
fork length size limit for greater amberjack only, remove the provisions for automatic increases in the red srapper commercial size limit to 15 inches in 1996 and 16 inches in 1998. and establish an aggregate daily bag and possession limit of 20 reef fish per person for all reef fish species not having a bag limit.

3. PURPOSE AND NEED FOR ACTION

Since implementation of the red snapper sock recovery plan, the Council has conducted annual reviews of the staus of red snapper srocks. Typically, a new assessment has been prepared by the NMFS/SEFSC every nio years with a comprehensive update in the intervening years. In November 1995, the Council reviewed a neu stock assessment for red snapper (Goodyear 1995) for purposes of setuing the 1996 TAC. The 1995 stock assessment incorpuriad new information about red snapper life history (which is reviewed later in this document) that substantially changed the estimates of current status of stock, recovery projections and Allowable Biological Catch (ABC). Briefly, these changes were 1) red snapper are longer lived than previously thought so that $11 / 2$ generation times now corresponds to a maximum recovery date of the year 2019 rather than 2010, 2) some reduction in shrimp trawl bycatch mortality is now assumed to have occurred since 1993 and has been incorporated into the stock assessment, 3) because of their increased longevity, the recovery will be more gradual than previously projected, and 4) the current staws of stock is now estimated to be 0.6 percent SPR rather than 4 percent (this last item is merely a rescaling of the stock condition given the new life history information, it does not represent any decrease in the perceived health of the stock).

The Reef Fish Stock Astamment Panel (RFSAP), upon reviewing the stock assessment and options for a range of TACs up to 14 million pounds, recommended a range of Allowable Biological Catch of 6 to 10 million pounds with a recovery urget date of 2019 (GMFMC 1995). This is considerably higher than the previous ABC range of 4 to 6 million pounds with a recovery target date of 2009, and is the result of incorporating the new infurmation about red snapper life history into the stock assessment. However, the RFSAP also warned that this $A B C$ range was based on the validity of a number of assumptions, particularly achieving a 50 percent shrinte bycarch mortality reduction by May, 1997 (stan of shrimp season). The Socioeconomic Assessment Panel (SEP), concerned about achievability of the assumed 50 percent shrimp bycatch reduction and stability to the fishery if a TAC at the upper end of ABC were selected but subsequently had to be reduced. recommended that the TAC be set at an intermediate level of 8 million pounds in 1996, with an increase to 10 million pounds in 1997 comingent upon achieving a 50 percent reduction in shrimp bycatch. This strategy was endorsed by the Red Snapper Advisory Panel (RSAP). The Scientific and Statistical Commitree (SSC) accepred the reports of the RFSAP and SEP, and advised the Council that the consequences of selecting a TAC at the upper end of ABC were that there would have to be an earlier and larger reduction in shrimp bycatich mortality (relaive to selecting a lower TAC), whereas the consequences of selecting a TAC at the lower end of $A B C$ were that there would need to be a reduction in the recreational red snapper harvest from recent levels.

A bag and size limit analysis prepared by NMFS projected that, if recreational bag and size limits were len unchanged, the 1996 recreational harvest would be 4.47 million pounds, corresponding to a TAC of 9.12 million pounds. Based on the results of the stock assessment recommendations of the RFSAP, SEP. RSAP SSC, and bag and size limit projections, the Council chose to extend the recovery target date to the new 1: generation time estimate of 2019, and to set the 1996 TAC at 9.12 million pounds, allocated 51 percent commercial (4.65 million pounds) and 49 percent recreational (4.47 million pounds). This is a 52 percent increase over the TAC level has been in place since 1993. It is more conservative than the upper end of $A B C$
range, yet it avoids the need to implement potentially desabilizing increases in recreational harvest restricuons.
The commercial red snapper allocation is controlled by a quota. with an individual transferable quota (ITQ) sysem scheduled to be put in place during 1996. For the commercial sector, red snapper size limits are used not to control rate of fishing, but to optimize biological and economic benerits at a given TAC. In 1994 a series of biennial 1 inch increases to an evennual 16 inch minimum size limit (in 1998) was established. A 16 inch size limit was determined to maximize yield per recruit and SPR recovery rate, assuming a 33 percent release mortality. The stock assessment has noted that scienific evidence for 33 percent release mortality is imprecise. Many commercial fishermen have argued that the actual mortality rate is higher, resulting in dead fish being discarded and wasted. In addition, commercial fishermen have argued that the 14 inch rish have a higher value during parts of the season. As a result, the Council proposed, through Amendment 12 . w eliminate the 1996 and 1998 automatic increases in the commercial size limit, and to leave the size limit at 14 inches unless a speeific decision was made to change it. Amendment 12 has not yet been reviewed by NMFS and cannot be implemented in time to prevent the 199615 inch size limit increase from taking place. Therefore, action is needed through this regulatory amendment to eliminate the automatic increases and restore the 14 inch commercial size limit as par of the 1996 implementaion of TAC, which was the Council's original intent in Amendment 12.

4. PROPOSED ACTIONS

The Council proposes to increase the red snapper TAC for 1996 to 9.12 million pounds, with 4.47 million pounds allocated to the recreational sector and 4.65 million pounds allocated to the commercial sector'.

The recreational allocation will be implemented by retaining the current 5 fish daily bag limit and 15 inch minimum size limit. The commercial allocation will be implemented by a quota. (Note: Through previous action, 1 million pounds of the quota is to be implemented through an extension of the red snapper endorsement system and associated trip limits, and the remainder through an individual transterable quota system.)

The Council also extends the recovery arget date to the year 2019. This is within the allowable recovery period of $1 / 1 / 2$ generation imes from 1990, based on the Reef Fish Stock Assessment Panel's recommendations that the nawral morality rate esimate be lowered to $\mathrm{M}=0.10$ resulting in an extension of the generation ome estimate to 19.6 years. (If M had remained at 0.20 , the maximum arget date would have been 2010 However, because of the faster recovery rate projection under $\mathrm{M}=0.20$, the proposed TAC and 50 percent shrimp bycatch reduction by 1997 would still result in a recovery by the target date.)

The Council also proposes to repeal, for the commercial sector, the automatic increase in red snapper size limit to 15 inches on January 1, 1996 and 16 inches on January 1, 1998 that were implemented through Amendment 5, and restore the 14 inch commercial minimum size limit.

[^1]
5. MANAGEMENT OBJECTIVE AND OPTIMUM YIELD

Optimum Yield

Nore: The Council has proposed, through resubmission of a rejected Amendment 11 proposal. a revision of the Oprinmm Yield definition that would set the biological component of OY at 30 percent SPR. This reviswn is presently in the process of being subminted to NMFS. Until it is implemented. the following is the existung definition of $O Y$.)

The primary objective and definition of Optimum Yield (OY) for the Reef Fish Fishery Management Plan is any harvest level which maintains, or is expected to maintain, over ime a survival rate of biomass into the stock of spawning age to achieve at least a 20 percent spawning potenial ratio (SPR).

Definition of Overfishing

The following is the definition of overfishing contained in Amendment 1 of the Reef Fish Fishery Management Plan (FMP).
1.e A reef fish stock or stock complex is overfished when it is below the level of 20 percente SPR.e
2.e When a reef fish stock or stock complex is overfished, overfishing is defined as harvestinge at a rate that is not consistent with a program that has been established to rebuild the stocke or swock complex to the $\mathbf{2 0}$ percent SPR level.e
3.e When a reef fish stock or stock complex is not overfished, overfishing is defined as ae harvesing rate that, if continued, would lead to a state of the stock or stock complex thate would not at least allow a harvest of optimum yield on a continuing basis.e

6. REEF FISH FRAMEWORK PROCEDURE AS SPECIFIED IN THE FMP

Note: Under Anendners 11, which will be implemensed in January 1996, there will be a number of revis: to the framework procedure. These revisions are eicher editorial in narure or only affect management of st... . that are nor overfished, and do nor affect red snapper. The following is the framework procedure under n... this regularory amendmens was developed.)

Optimum Yield (OY) can be achieved with annual total allowable catch (TAC) specifications for each spe or species group. The Council has espoblished a framework procedure where, on an annual basis, a scier working group will esmblish a range of Allowable Biological Catch (ABC), and the Council will set a and prescribe fishing restrictions to attain the management goal of OY for implementation by the Reg. Director (RD) of NMFS prior to the beginning of a fishing year.

Procedure for Specification of TAC:

1.0 Prior io August 1 each year, or such other time as agreed upon by the Council and RD, the Southeasto Fisheries Center of NMFS (SEFC) will: a) update or complete biological and economic assessmentso and analyses of the present and furure condition of the stocks for red snapper and other reef fish swiko or stock complex; b) assess to the extent possible the current SPR levels for each stock: el esamateo fishing mortality (F) in relation to $F_{1 \text { porem spr }}$; d) estimate annual surplus production $F_{\text {dat }}$ or othero population parameters deemed appropriate; e) summarize statistics on the fishery for each stock or stocko complex; f) specify the geographical variations in stock abundance, mortality, recruitment. and age oto entry into the fishery for each stock or stock complex; and g) analyze social and economic impacts ito any specification demanding adjustments of allocations, quotas, or bag limits.o
2.0 The Counci! will convene a Scientific Assessment Panel, appointed by the Council, that will. as ao working group, review the SEFC assessment(s), current harvest statistics, economic, social, and othero relevant data. It will prepare a written report to the Council specifying a range of ABC for each stocko or sock complex which is in need of catch restrictions for atraining or maintaining OY. The ABCs areo catch ranges that will be calculated for those species in the management unit that have been ideniriedo by the Council, NMFS, or the working panel as in need of catch restrictions for attaining or maintainungo OY. The range of $A B C s$ shall be calculated so as to achieve reef fish population levels at or above theo 20 percem SPR goal by Jamary 1, 2000, for all reef fish except red snapper which has a January 2007o target date, or by a ime period (brget date), or set of ime periods (arget dates) specified by the stocko aswnonent panel. Any ime period specified by the assessment panels for consideration by the Councilo under this framework proceture cannot exceed a period equal to 1.5 times the potential generation timeo of the stock. Generation imes are to be specified by the stock assessment panel based on the biologicalo characteristics of the individual stocks. For stock or stock complexes where data in the SEFC reportso are inedequate to compute an ABC based on the spawning stock biomass per recruit model, the aboveo working group will use other available information as a guide in providing their best estimate of an ABCo range that should result in at least a 20 percent SPR level. The ABC ranges will be established too prevent an overfished stock from further decline. To the extent possible, a risk analysis should beo conducted indicating the probabilities of atraining or exceeding the stock goal of 20 percent SPR, theo ammal transitional yields (i.e., catch streams) calculated for each level of fishing mortality within the ABC range, and the economic and social impacts associated with those levels. The working groupo repor will include rewmmentaions on bag limits, size limits, specific gear limits, season closures, ando other resrictions required to atmin management goals, along with the economic and social impacts oto such restrictions, and the research and data collection necessary to improve the assessments. Theo worting group may also recommend additional species for furure analyses.o
3.0 The Council will conduct a public hearing on the working group reports at, or prior, to the ime it iso corridered by the Council for action. Other public hearings may be held also. The Council will requesto review of the repurs by its Reef Fish Advisory Panel and Sanding Scienific and Statistical Commirreso and may corvene these groups before ating action. 0
4.0 The Council in selecing a TAC level and ime period (arget date), if necessary, for each stock or stocko complex for which an ABC range has been identified will, in addition to taking into consideration theo recommendations provided for in (1), (2), and (3), uilize the following criteria:o
a.o Set TAC wittin or below the $A B C$ range or set a series of annual TACs to obtain the ABC levelo within three years or less. 0
b.c Subdivide the TACs into commercial and recreational allocations which maximize the net benefitse of the fishery to the nation. The allocations will be based on historical percentages harvested by.c each user group during the base period of 1979-1987*. However, if the harvest in any year exceedsc the TAC due to either the recreational or commercial user group exceeding its allocation.c subsequent allocations peraining to the respective user group will be adjusted to assure meeting thec specified target date spawning stock biomass per recruit (SPR) goal.c
5. The Council will provide its recommendations to the RD for any specifications in TACs and target datese for each stock or stock complex, quotas, bag limits, trip limits, size limits, closed seasons, and geare restrictions necessary to attain the TAC, along with the reports, a regulatory impact review and environmental assessment of impacts, and the proposed regulations before October 15. or such other amec as agreed upon by the Council and RD.c
6.c Prior to each fishing year, or other such ime as agreed upon by the RD and Council, the RD will revieuc the Council's recommendations and supporting information; and, if he concurs that the recommendationsc are consistent with the objectives of the FMP, the National Standards, and other applicable law, he shalle forward for publication notice of proposed TACs and associated harvest restrictions by November 1. ure such other time as agreed upon by the Council and RD (providing up to 30 days for additional publice comment). The RD will are into consideration all information received and will forward for publicationc in the Federal Register the notice of final rule by December 1, or such other time as agreed upon by thec Council and RD.c

If NMFS decides not to publish the proposed rule of the recommended management measures, or to otherwise hold the measures in abeyance, then the Regional Director must notify the Council of his intended action within 15 days of receipt of the Council's proposal and the reasons for NMFS concern along with suggested changes to the proposed management measures that would alleviate the concerns. Such notice stall specify: 1) the applicable law with which the amendment is inconsistent, 2) the nature of such inconsistencies, and 3) recommendations concerning the actions that could be taken by the Council to conform the amendment to the requirements of applicable law.
7.c Appropriate regulatory changes that may be implemented by notice action include:c
a.c The TACs for each stock or stock complex that are designed to achieve a specific level of ABCC within the firs year, or ammal levels of TAC designed to achieve the ABC level within three years.c
b.c Bag limits, size limits, vessel trip limits, closed seasons or areas, gear restrictions, and quotase designed to achieve the TAC level.c
c.c The time period (arget date) specified for rebuilding an overfished stock with the restriction thatc a ime period specified under this framework procedure cannot exceed a period equal to 1.5 umesc the generation time of the stock under consideration.c
8.c If the NMFS decides nox to publish the proposed rule of the recommended management measures, or toc otherwise hold the measures in abeyance, then the Regional Director must notify the Council of hisc intended action within 15 days of receipt of the Council's proposal and the reasons for NMFS concernc

[^2]along with suggested changes to the proposed management measures that would alleviate the concerns Such noice shall specify: 1) the applicable law with which the amendment is inconsistent. 2) the narure of such inconsistencies, and 3) recommendations concerning the actions that could be taken by thee Council to conform the amendment to the requirements of applicable law.e

7.e WHAT IS SPAWNING POTENTIAL RATIO (SPR)? e

Spawning potential ratio is an index of a population's health as measured by the biological ability of the adult fish to produce spawn or eggs. A paricular estimated level of SPR is directly dependent on the esamated number of living adult fish (or females), and their longevity or number at age, which is controlled by the prevailing fishing mortality exerred on the population. This biological spawning ability can be measured in terms of total aduit fish biomass (number alive x average weight), gonad biomass (number alive x average gonad weight), or eggs produced (number alive x average number of eggs spawned) for each age class of insh.

A generation of fish in a population must on average produce the same number of adult fish in the next generation for a population to persist without decline or, in other words, be in equilibrium. All populations of animals atrempt to attain levels of equilibrium, however environmental flucruations prevent this from happening in most cases. Fishing reduces the number of adults surviving from a given number of recruits by reducing their life expectancy. To prevent population collapse the egg to recruit survival probability and/or the fecundities of the survivors must rise in response to the fishing induced lowered abundance of adults (Goodyear 1989). Clearly, the above population mechanisms allow a population to be harvested without damaging its biological potential. However, as harvest pressure grows (fishing mortality increases), a point is reached where the population looses more fish through harvesting than it can replenish, and overfishing occurs. A population can also exist at an equilibrium level below its optimum level and can increase in size if fishing mortality is reduced.

Various measures of optimal fishing have been defined whereby fishing greater than the optimal level resuls in overfishing. The concepts of maximum sustairable yield (MSY) and maximum yield per recruit (YPR) are the two most common meacures of optimal fishing. For reasons set forth in Amendment 1, the measure of optimal fishing for reef fish was chosen oo be 20 percent SPR, which in a YPR context results in management eadvice similar to that needed to achieve maximum YPR.e

Calculation of SPR is similar to calculation of YPR, except, instead of atrempting to maximize yield from ae year class of fish, achieving a certain level of spawning potential is atrempted. This spawning potential ise estimated as the fraction or ratio of spawning ability of the species when being fished divided by the spawnunge ability of the species under conditions of no fishing mortality; i.e., only natural mortality occurs. The SPRe of a population is then controlled by the fishing mortality exerred on each age class of fish.e

8.e STATUS OF RED SNAPPER STOCKe

This section is based on the 1995 Report of the Reef Fish Stock Assessment Panel (GMFMC 1995), and the 1995 red snapper swok assessment (Goodyear 1995). Comparisons to previous stock assessments are baxe ل on information contained in the 1994 red snapper stock assessment (Goodyear 1994).

New Information

A number of new findings have been incorporated into the 1995 stock assessment, which alter the current estimate of staws of stock and recovery projections. These include:

Reduced growth rate_escimate: An improved growth rate estimate was derived by incorporating new data obtained from a number of studies that assigned ages from examination of scales, ooliths or length frequencies for the youngest fish. Incorporation of this new data into a pooled growth model resulted in assigning much older ages to- some fish than were seen in earlier studies, and a reduction in the asymptotic maximum length from 45.9 inches in the 1994 ascessment, which was based primarily on scale data (Goodyear 1994, Figure 10) to 34.5 inches in the current stock assessment. The new pooled data model is shown in Figure 1, and is based on the following von Bertalanffy growth equation:

$$
L_{1}=87.75\left(1 e^{(0.16(t-0.4527)}\right)
$$

where $t=$ age in years, and $L_{M}=$ wal length in centimeters.

Figure 1. Age-length scanergram and von-Bertalanfy equarions fired to three dara groupings. Each included the lengih-frequency ages: SCALE added scale ages. Oroluh added otolish ages; Pooled included all dara except scale ages >7.

Reduced_namial_mocality_rare_and_increased_longexit_ estimates: Previous stock assessments assumed a naural morality rate of $M=0.20$. However, estimates of longevity and natural mortality have changed as a result of the new age and growth data, which includes fish that have been aged to as old as 53 years (the previous oldest aged fish had been 42 years), and historical records, which indicate that large (and presumably old) red snapper were once relatively common. Calculations of natural mortality from a variety of data sources and analytical methods produced estimates of natural mortality ranging from $\mathbf{M}=0.12$ to 0.38 with 95 percent confidence bounds ranging from $\mathbf{M}=0.02$ to over 1.00 . Despite the large range of mortality estimates and uncertainty about their robustness when derived from fished stocks with variable recruiment. the apparent longevity of this species argues that natural mortality must be relatively low. Consequendly, the RFSAP recommended adoption of a naural mortality rate of $\mathbf{M}=0.10$ for this and subsequent analysis of red snapper stocks. As a result of this lower mortality rate, the natural lifespan of red snapper is longer than previously estimated, and the estimate of generation time has increased from 13.6 years to 19.6 years.

Incorparorion_of_reducrions.in_shrimp_rawi_hycarch_martaliy_for_1993_and_1994: Earlier stock assessments assumed that mo previous reduction in shrimp trawl bycatch mortality has yet occurred. For the 1995 stock assessment, shrimp trawl bycatch estimates were available at a resolution of 4 -month intervals rather than annual intervals. This allowed incorporation of the effect of temporal changes in the age-class distribution ot the shimp tawl bycarch inmo the bycatch mortality estimates. Consequently, analysis of management options were able to include already achieved shrimp trawl bycatch reductions of 5.8% in 1993 and 10% in 1994 However, even with inclusion of the 1993 and 1994 bycatch reduction estimates, it remains that only 12 percent of the population ultimately escapes capture by the shrimp fishery to become part of the directed fishery and spawning stock.

Reduced estimare of recrearional release mormlity: Previous red snapper stock assessments assumed a releaxe morality of 33 percent for all red snapper fishing. The mortality of released fish is an important consideratun
in evaluaing the conservation effects of regulations that set minimum sizes and total allowable catch. Data from an ongoing mark-recapare study suggests that mortality increases from 20 to 30 meters (66 to 98 feen) About 14 percent of fish at 30 meters showed signs of stress upon release. In addition to the hooking and handling mortality, predation of released fish caught and released may be exacerbated in areas with significant concentrations of large predators. Analyses in the current stock assessment assume release mortality of 20 percent for the recreational and 33 percent for commercial fisheries based on the depth distribution of their respective effort.

Harvest Trends

Commercial: Gulf of Mexico red snapper harvested by U.S. fishermen are primarily caught in the northern Gulf from Panama City, Florida to Galveston, Texas. The fishery is primarily prosecuted in federal waters. offshore, and outside of state waters. The greatest part of the present commercial and recreational harvest is directly south and to the west of the Mississippi River.

In the commercial red snapper fishery the primary gear types used are manually operated handlines or pouer assisted lines (bandit rigs). Landings trom these gears are reported under a single gear code for handlines Other gear types used to harvest red snapper include botom longlines, buoy lines and fish traps, although tulai landings of red snapper from fish traps have been small.

The commercial harvest since 1990 is shown in the table below and by gear type in Figure 2 (handlines includes power reels and bandit rigs). The commercial quota was initially 3.1 MP in 1990 and was subsequently set at 51 percent of TAC when adjusuments were made. For 1995, the commercial harvest was estimated to be slightly below the 3.06 million pound quota as of the close of the fishing season on April 14. However, at the Council's request, the commercial season was reopened for 36 hours on November 1-2, 1995 to allow the commercial sector an opporunity io harvest the remaining 0.16 MP of the 1995 3.06 MP quou. Preliminary estimates are that, with inclusion of the November mini-season, the commerciale sector will have met or slightly exceeded its allocation.

Figure 2. Comunercial landings of red snapper from: waters of the Gulf of Mexico.

COMMERCIAL RED SNAPPER HARVEST

Year	Commercial Quota	Commercial Harvest
1990	3.1 MP	$2.6 \mathrm{MP}(1.2$ thousand MT)
1991	2.04 MP	$2.2 \mathrm{MP}(1.0$ thousand MT)
1992	2.04 MP plus emergency season	$3.1 \mathrm{MP}(1.4$ thousand MT $)$
1993	3.06 MP	$3.4 \mathrm{MP}(1.6$ thousand MT)
1994	3.06 MP	$3.1 \mathrm{MP}(1.4$ thousand MT $)$
1995	3.06 MP	$2.9 \mathrm{MP}(1.3$ thousand MT) - preliminary

The first quota closure of the commercial red snapper fishery occurred on August 24, 1991. In subsequent years, a derby fishery developed, and the quota was filled in increasingly shorter time periods. As shown in Figure 3, maximum catch per day accrued to those fishermen who depared the las week of December 1991 for the start of the 1992 season. Catch per day decayed rapidly from the peak obsenved in the early part of the 1992 season and by the last month of the season was comparable to that at the end of the 1991 season. Catch per day during the 1,000 pound trip limit in 1992 averaged about 240 pounds and was similar to the same time period the previous year. In 1993 and 1994 catch per trip was obviously constrained by the trip limit and the fleet was capable of much higher boal carches. Annual mean catch per day for the directed

Figure 3. Red snapper catch per day fished by week for tripst where red snepper exceeded haty the total finfishr landings. fishermen also increased by more than 3 -fold in the six year period since the logbook prograto was implemented. In addition to increased catch rates, red snapper has become more of a trgeted species (i.e., it comprises a greater proportion of an average red snapper vessel's toll landings) than it was prior to Amendment 1.

Recreational: Recreational red mapper harvest allocations since 1991 have been set at 49 percent of the TAC. or 1.96 MP in 1991 and 1992, and 2.94 MP since 1993. Acwal recreational harvests in pounds of red snapper have exceeded the allocation in every year.

RECREATIONAL RED SNAPPER HARVEST

Year	Recreational Allocation	Recreational Harvest
1990	No allocation was explicitly specified	$1.3 \mathrm{MP}(0.579$ thousand MT $)$
1991	1.96 MP	$2.1 \mathrm{MP}(0.937$ thousand MT $) \mathrm{a}$
1992	1.96 MP	$3.8 \mathrm{MP}(1.726$ thousand MT $) \mathbf{a}$
1993	2.94 MP	$5.4 \mathrm{MP}(2.429$ thousand MT $) \mathrm{a}$
1994	2.94 MP	$4.7 \mathrm{MP}(2.125$ thousand MT $) \mathrm{a}$
1995	2.94 MP	not available

Recreational red stapper harvest in mumbers of fish is shown in Figure 4. Separate estimates by fishing mode were made from 1986 onward. The catch by anglers from private/rental vessels is approximately the same as for the headboats and charter vessels.

Figire 4. Eninored nombers of red smapper harvested by recrearional fishermen by mode, 1979 io 1994.

Figure S. Estinated fractions of red snapper caught and released by recreanional fishermen 1970-1901

The MRFSS, in addicion in tarver, esimates the number of fish that are caught and released (Figure 5). Red srapper were rarely released in the early years of the survey but more than half of those caught were being released by 1990, and the proportion released declined thereafter. This patuern reflects changes in the length frequency of the red snapper harvesed and is likely due to minimum size limits as well as the growth of the 1989 year clas.

Oceall_Harvest The Comal established TAC levels of 4 MP in 1991 and 1992, and 6 million pounds since 1993. Tool directed fishery harvests during 1990 through 1994 are listed in the cable below and in Figure 6 (with metric tonnes converted to millions of pounds).

OVERALL RED SNAPPER HARVEST

Year	TAC	Toual Directed Harvest
1990	No TAC was explicity specified	$4.0 \mathrm{MP}(1.8$ thousand MT)
1991	4.0 MP	$4.4 \mathrm{MP}(2.0$ thousand MT)
1992	4.0 MP plus emergency season	$6.8 \mathrm{MP}(3.1$ thousand MT)
1993	6.0 MP	$8.8 \mathrm{MP}(4.0$ thousand MT)
1994	6.0 MP	7.7 MP (3.5 thoucand MT)

These harvest levels reflect adjustments that have been made to the MRFSS recreational estimates.

The Council inended that management measures would control the harvest of red snapper. However. the toul harvest by the directed fishery has exceeded the TAC every year since 1991. The overruns in 1992 and 1993 were each 2.8 million pounds over their respective TACs.

Recreational red snapper harvest allocations since 1991 have been set at 49 percent of the TAC, or 1.96 MP ine 1991 and 1992, and 2.94 MP since 1993.

Recruitment Trends

Trend us Iime: Juvenile abundance indices from the Summer SEAMAP Survey and Fall Groundfish Survey show a general decline berween the 1970s and 1980s with the lowest values occurring with the 1985 year class (Figure 7). The Summer SEAMAP red snapper collections are composed almos entirely of age-1 fish while the Fall Groundfish samples contrin both age-0 and age-1 indivituals. A compoive time series was developed to characterize recruiment by year class. Year class surengths have varied more than 10 -fold during the period of record. Mos recent years have had poor recruiment compared to the 1970s. However, the 1989 year class was the strongert seen in 8 years and more than 4.4 imes greater than the average of the previous 5 years. Members of this year class began to recruit to the fishery lare in 1991 and most were of legal size by January 1992. The five subsequent year classes (1990-1994) averaged only about 40 percent of the 1989 year class, but 1.8 times higher than the five years preceding 1989.

Figure 7. Year class strength estionate for red snapper 1971-1994

Irend_rs_Spawning_Stock: Recruitment closely follows the spawning stock (Figure 8) indicating that this fishery is recruiment over-fished. This figure illustrates that spawning srock, measured as population fecundity, has increased since regulations were implemented in 1990. However, the figure also illustrates how close this fishery came to recruiment failure in 1985. This trend indicates there is a spawning stock threshold below which recruiment declines precipitously. The red snapper population has been reduced to a level that any decrease in stock size would have a direct negative effect on recruiment.

Figure 8. Scattergram of recrummens and population fecundin for $M=0.10$. The 1989 pouss was omured from the regression.

Generation Time and Recovery Target Date

Generation time is defined as the mean age of the mothers of the young comprising a year class (Goodyear 1994). It is a function of the mean fecundity of females at each age and the number of females alive at each age. The number of females at each age in an unfished population is dependent upon the natural mortality rate estimate. The management plan specifies that the recovery schedule for overfished stocks is to be no greater than 1.5 imes the unfished generation ime. Esimared generation times and the corresponding recovery target dares (besed on a starting date of 1990 and a $11 / 2$ generation time multiplier) for the previous natural mortality rate estimate of $\mathbf{M}=0.20$ and the current estimate of $\mathrm{M}=0.10$ are presented below.

Natural Morality Rate	Generation Time	Recovery Target Date
0.10	19.6 years	2019
0.20	13.6 years	2010

Fishing Mortality Rates
VPA estimates of fishing mortality rates within the directed fishery have been very high. Data were sufficient to estimate the mortality only beginning in 1984. The fishing mortality rates rise rapidly with age after the juvenile red srapper enter the fishery reaching a maximum at age 3. In previous stock assessments, the 198: the peak was above $\mathrm{F}=0.7$ but declined to a low of $\mathrm{F}=0.3$ by 1992. Fishing mortality increased in 199 : !.
about $\mathrm{F}=0.35$ at age 3 coincident with the increased harvest by the recreational fishery. In the current stoik assessment, average fishing mortality in 1994 in the directed fishery was estimated to be $\mathrm{F}=0.30$ per vear

For comparison the red snapper yield per recruit analyses provided estimates of $F_{0,1}$ and $F_{\text {ma }}$, two management benchmarks rypically used to determine overfishing. At $\mathrm{M}=0.10, \mathrm{~F}_{0}=0.076$ per year or 0.073 per year for discard mortality levels of 20 percent or 33 percent respectively. The level for $F_{\text {ans }}$ is 0.13 per year. The current fishing morality level of $F=0.30$ is approximately four times higher than F_{0} : and more than twace as high as $\mathrm{F}_{\mathrm{max}}$.

Spawning Potential Ratio (SPR) Estimates and ABC Range

The terms spawning swok biomass per recruit (SSBR) used in Amendment 1 and spawning potenial raou (SPR) used in the stock assessments both refer to the same index of population status. This regulator: amendment followe the terminology of the stock assessments by using SPR because it is technically a more correct reference to spawning stock index.

In previous stock assesments, red snapper SPR was estimated to have been about 0.6% of the unfished level in 1984, increasing to slightly below 2% by 1994 (Goodyear 1994). When the new biological informatun previously discussed in this document was incorporated into the SPR model, but natural mortality was kept at the old estimate of $M=0.20$, the 1984 estimate of SPR increased to 4 percent, but with very hirie improvement in subsequent years (Figure 9), partly because year classes partly protected by reient conservation actions have not yet become important contributors to the spawning stock (Goodyear 1995)

Under the new naural morality estimate of $M=0.10$, the new orren SPR estimate is about 0.6 percent, essentially unchanged from 1984 (Figure 9). The RFSAP noted that this change in SPR (relative to the estimates under $\mathrm{M}=0.20$) is simply a rescaling of the recovery parameters along with extension of the urget date to 2019, and does not represent a dramatic decrease in the perceived health of the stock. Under the assumptions that 1) actual shrimp trawl bycatch mortalities are not higher in 1995 and 1996 that projected, 2) the recreational sector stays within its allocation, 3) a 50 percent reduction in shrimp trawl bycatch morality is implemented in 1997, and 4) projected increases in recruiment are realized, the RFSAP recommended an ABC range of 6 million to 10 million pounds of red smpper. However, the RFSAP also wamed that failure to meet these conditions can result in possibly dramatic reductions in furure ABC ranges

9.n CHARACTERIZATION OF THE FISHERY AND PARTICIPANT GROUPSn

General Description

The fishery for red snapper is composed of a shrimp trawl bycatch of age-0 and age-1 fish, a comm. fishery managed by quota since 1990, a for hire recreational fishery and private recreational anglers the advemt of TAC and allocations in the fishery, its history can be described as one of attenuated seass:r.
deprested prices for the food commercial sector and overruns of allocation by the recreational sectors. The reaction by the Council has been the implementation of an effort management system for the food commercial sector, the establishment of a permit system for the for-hire recreational fishery and the accelerated implementation of increased minimum sizes on red snapper for the anglers.

As mentioned elsewhere, the statutory allocation of TAC is 51 percent commercial and 49 percent recreational. but the actual landing percentages in the directed fishery over the last three years averaged at 41 percent commercial and 59 percent recreational.

Recreational and For-Hire Sectors

Recreational landings have been identified from three survey sources: Texas Parks and Wildlife. NMFSHeadboat and NMFS-MRFSS. All three surveys reflect an increasing treni in landings over the years. Figure 10 displays the relative contribution to recreational catch by state using these sources. Another perspective is to view the landings on a state by state basis. Even during this short time frame the shift in state shares of the recreational landings, notably the recovery of landings by Florida and the growth of Louisiana and Alabama is evident.

Figure 11 displays landings by mode for the period 1986 to 1994 . The landings in the charter mode have a bimodal distribution with highs during 1986 and 1993; the private boat and headboat modes suggest a trend of growing catches. Noticeable here is the relative share of the charterboat fleet and of the for-hire sector generally. The estimation of landings for the mode is controversial because of the reanalysis of the 1993 and 1994 data. NMFS-MRFSS staff concluded that those years were correct estimates while 1990-92 were possibly underestimates. The figure reflects a 5.7 MP eatch in 1994 for example. It is word noting that the approach taken by the stock assessment was to average those years and therefore to detrend the 1993 and 1994 data for a 1994 estimate of 4.7 MP . It should also be noted that prelimimary parin-year landings dan received by the Council indicated 1995 landings from MRFSS were i.t percent lower than those in 1994 and 1995 headboat landings 16 to 32 percent lower than those in 1994 (Holiman and Dixon, pers. comm. 1995).

Esimation of recreational overuns is further complicated by the increased minimum size limit that went intu effect during 1995 and the lack of 1995 data to evaluate the accuracy of the earlier reduction estimates. Some public estimony to the Council giggested that landings were down as a result of the size limit and bad weather

Per MRFSS records only, the number of recreational anglers in the Gulf of Mexico averaged at 1.87 million annually for the period 1990-1994. These anglers took 16.9 million trips annually for the same period. Figures 12 through 15 present some information on angler trips in which red snapper was argeted (arget trips) or caught (catch urips). In Figure 12, note the trends in red snapper target trips by state between 1988 and 1994: 1) there was litue percepible effect on arget trips after the imptementation of Amendment 1 to the reef fish

Fres 13. Res anor nocemond

FMP; 2) Louisiana anglers increased trips by roughly 20 percent when the last two years are compared 10 the prior five years; 3) Alabama anglers experienced a doubling of trips between 1991 and 1992 which has persisted and increased; 4) Missisippi anglers mimicked the trend in Alabama.

Figure 13 displays angler trips in which red snapper was caught, whecher or not red snapper was targeted. The catch trips correlated well with the target trips, although not so much in terms of magnioudes of changes. In Alabama, for example. the catch trips incresed and decraed in the same direction as the arget trips. But the doubling of target trips between 1991 and 1992 was accompanied by only a slight increase in catch trips. Catch trips in this state nonetheless picked up in later years. Florida's proportion of catch trips is larger than the state's proportion in arget trips while the opposite seems to be the case for Mississippi.

Figures 14 and 15 break down the recreational arget and catch trips into shore, charter and private boat rips. The shore mode compries a minimal portion of both total arget and catch trips. The charter boat mode

indicates a seady increasing trend in both target trips (Figure 14) and catch trips (Figure 15). The private mode has domimated the target trips. The same can be said of the catch trips, except in 1993 and 1994 when the charter boat mode had higher proportional share of total catch trips. Figure 15 appears to bear out the growing importance of the chareer boat mode in accounting for recreational catches of red snapper.

While target and catch trips can give some information about furure catch, catch composition suggests some of the species effects of funther regulation of anglers and the for-hire sector. Figure 16 illustrates the catch composition of red snapper catch trips, i.e., trips catching red snapper whether or not red snapper was argeted. This figure appears to imply that the corifosition of species caught together with red snapper has remained relatively stable. Among the various species caught, there also appears to be no trend as to which species are caught as regulations are
 changed on the red snapper fishery.

Commercial Sector

Red smppers are mainly caught and landed in the northern and western Gulf (including Texas to Bay County. Florida). Commercial landings of reef fishes in this area declined from over 15 MP in 1964 (a good portion of which was from Mexican waters) to a low of 5.5 MP in 1978. Landings recovered during the late 1970s, and have averaged 9.0 million pounds (whole weight) per year between 1981 and 1994 with a range of 6.5 million pounds (in 1991) to 11.0 million pounds (in 1988) (Figure 17). However, the species ecomprision of the catch changed markedly. Landingse of red snapper declined from approximately 12.2 million pounds in 1964 to 2.2 million pounds in 1991, the first year of management with quotas. Red stapper now compue the vas majority of the catch on
 red snapper trips. Red snapper represented 35% of the total commercial catch of reef fishes in 1994 compared wim 72% of the catch in 1980 and 85% in 1970.

Ex-vessel value received by commercial reef fishermen in the northern and western Gulf of Mexico increased from $\$ 2.9$ million in 1962 to $\$ 18.6$ million in 1988 , declined to $\$ 11.9$ million in 1991 , and then increased ". S15.5 million in 1994 (Figure 18). Much of the increase prior to 1988 was due to inflation, as measured hy the consumer price index for all items and all urban consumers (CPI-U, with a 1982-1984 base period). Arur adjusting for inflation, toal ex-vessel value tended to mirror the trend in landings (compare Figures 17 dmb 19). Real ex-vessel value remained relatively constant from 1981 through 1987, peaked in 1988, and then declined. The real ex-vessel revenues received in 1991 and 1992 were the lowest since 1980 (Figure 19)

Commercial fishermen in the northern and western Gulf received $\mathbf{S 6 . 2}$ million from red snapper in 1994 Historically, red snapper has been the most valuable species in the fishery, but its relative importance has declined (Figures 17 and 19). In 1994, red snapper contributed 40\% w overall value received, whereas it conribured 83% in 1980 and 93% in 1970. Red snapper prices generally rose more quickly than the generai price level prior to the derby fishery. Since then, however, red snapper prices have declined markedly and monthly price flucuations are large.

Reef.Eish_Commercial_Permits

The permit data file identifies vessels with permits to fish for reef fishes in Federal waters of the Gulf of Mexico. The data indicate-a decline from approximately 2,000 in January, 1993, to about 1.532 in July, 1995

The reason for the decline is unknown, but it is presumed that vessels which were only marginally active or not active at all in the reef fish fishery have not chosen or have not been able to have the permits renewed. When the red snapper endorsement system took effect in 1993, 131 vessels qualified for the endorsement which allowed them to harvest up to 2,000 pounds per day trip. The rest of red snapper fishermen were allowed a 200 pound limit per day trip.

An economic survey was conducted in the fall of 1994 and spring of 1995 by interviewers in face-to-face meeings with owrers or qperabrs of randomly selected vessels. The questionnaire primarily asked fishermen about their fisting histuries, their capial invesuments in vessel and equipment, and about their average catches. revenues, and cost per trip for heir two most important fishing activities for reef fishes during the 1993 calendar year.

Standard statistical procedures were used to estimate the total number of trips for red snapper, as well as landings, revemues and trip costs. It was estimated that a total of nearly 3.7 million pounds of red snapper worth $\$ 7.4$ million were landed on 4,328 trips. Fishermen on high-volume boats with vertical hook-and-line gear accounted for nearly 62\% of toal landings and ex-vessel revenues of red snapper. Fishermen spent neariy $\$ 2.2$ million for routine trip costs such as fuel, ice, bait, food and minor gear replacement and repair These estimated costs exclude fixed costs and payments to owner, capain and crew.

Intraduction

The National Marine Fisheries Service (NMFS) requires a Regulatory Impact Review (RIR) for all regulatory actions that are of public interest. The RIR does three things: 1) it provides a comprehensive review of the level and incidence of impacts associated with a proposed or final regulatory action, 2) it provides a revieuof.the problems and policy objectives prompting the regulatory proposals and an evaluation of the major alternatives that could be used to solve the problem, and 3) it ensures that the regulatory agency systematically and comprehensively considers all available alternatives so that the public welfare can be enhanced in the most efficient and cost effective way.

The RIR also serves as the basis for determining whether any proposed regulations are a "signifiant regulatory action" under certain criteria provided in Execuive Order 12866 and whether the proposed regulations will have a "significant economic impact on a substanial number of small enities" in compliance with the Regulatory Fexibility Act of 1980 (RFA). The primary purpose of the RFA is to relieve small businesses, small organizations, and small governmental jurisdictions (collectively: "small entives") of burdensome regulatory and recordkeeping requirements. The RFA requires that if regulatory and recordkeeping requirements are not burdensome, then the head of a Federal agency must cerify that the requirement, if promulgated, will not have a significant effect on a substantial number of small enities.

This RIR analyzes the probable impacts that the proposed alternatives for the Reef Fish Fishery Management Plan (FMP) would have on the commercial and recreational directed red snapper fisheries. Although the currem FMP subject to proposed regulatory amendment covers only reef fish within its management unit. the proposed management measures are considered with the major assumption that the bycatch mortality rate it juvenile red snapper in the strimp fishery would be reduced in half in 1997. The shrimp fishery has been identified as a major source of juvenile red srapper fishing mortality due to incidental catches in shrimp rawis Currendy, bowever, the Council is developing an amendment to the shrimp FMP that would require byiation reduction devices in shrimp trawls. The succeeding analysis focuses mainly on impacts on the red snapper fishery.

In this doournerl, the "Economic Impacts" starements under each of the management oprions comprise the huia of the RIR. The problems and objectives are described in previous sections of this regulatory document a a part of the RIR by reference.

Proposed_Alternatiyes

Proposed Alemative 1. Set the 1996 TAC for red snapper at 9.12 million pounds, with 4.65 mili.... pounds allocited to the comsercial quota and 4.47 million pounds allocated to the recreational fistire.

Proposed Alternative 2. Implemented the recreational allocation by retaining the status que ..I . recreational size limit of $\mathbf{1 5}$ inches and a recreational daily bag limit of 5 fish.

Proposed Alternative 3. Extend the red snapper recovery target date to the year 2019, based on y wru natural mortality estimate of $\mathbf{M}=\mathbf{0 . 1 0}$ and a new generation time estimate of 19.6 years.

Propased Alternative 4. Remove the provision, for the commercial sector, for automatic red snapinminimum size limit increaces to 15 inches total length in 1996 and 16 inches total length in 1998 that m .
implemented through Amendment 5, and retain the 14 inch total length size limit for red snapper for the ommercial sector.

Nore: The above Proposed Alsemarives are inser-relared and have therefore been listed and discussed together in this section. In particular, any changes to Proposed Alsemative 1 would force changes to Proposed Atsemarive 2, and changes to Proposed Alternative 3 would force Changes to both Proposed Alsermarives 1 and 2.

Rationale: The proposed TAC is within the 6 to 10 million pound ABC range recommended by the RFSAP. and is more conservative than the maximum allowed under the ABC recommendation. This is the first ame since 1991 that the Council has proposed a TAC at less than the upper limit of ABC', and reflects. the concerns expressed by the RFSAP, SEP and RSAP about achievability of a 50 percent shrimp bycatch reduction in 1997. The proposed TAC has a betwer than 50 percent probability of achieving the recovery target even under the more conservative assumption of only a 37 percent shrimp trawl bycatch reduction in 1997 and a 50 percent reduction in 1998. The rechnology wo achieve this reduction currently exists, and the Council is in the process of preparing an amendment to the Shrimp FMP to implement the reduction. Therefore, achieving the bycatch reduction goal appears reasonable.

There is a 54 percent probability of achieving the 20 percent SPR target by 2019 with a 9.12 million pound TAC. This is based on a linear interpolation in Table 118 of the stock assessment (appended to this amendment), berween the probabilities of achieving 20 percent under an 8 million pound TAC (90% probability - column C) and a 10 million pound TAC (25% probability - column D). This is also based on the more rescrictive anourupion that there will only be a 37 percent reduction in shrimp trawl bycatch in 1997 and a 50% reduction in 1998. If the full 50% shrimp trawl bycatch reduction can be achieved in 1997, these probability levels will be even higher.

Bag and size limit analysis by NMFS (Holiman 1995a, Table 1-appended to this amendroent) projects that recreational harvert under the existing 5 fish and 15 inch recreational limits will result in a recreational red srapper harvest of 4.47 million pounds. This is exactly the recreational allocation under a 9.12 million pound TAC, mating additional recreational harvest resrictions unnecessary. Anecdotal information from fishermen suggers that recreational harvest may be even lower than projected due to the increasing frequency of storms in the Gulf of Mexico and a corresponding decrease in recreational effort, which has not yet been reflected in the recreational survey dan. In addition, since we do not currently have a full year of recreational fishing under the existing bag and size limits, the acoual impact of the existing size and bag limits is not yet known. Mainminirg staw quo for an additional season will allow ime for the necessary data to be collected to fully asins the impact of the exising regulaions before deciding whether changes are needed. Status quo will also promote stability in the recreaiomal for-hire industry. Charterboat operators have suggested that their ability to atract paying customers would be severely impacted if the bag limit were to be further reduced.

Ereming of the recovery trexet date to the year 2019 is a result of improved biological data for red snapper. New age and frowt data inficales that red smapper are much longer lived and have a longer generation time than previouty thougtr. The 2019 target date is $11 / 2$ times the new generation time. As stated in the RFSAP report, this is simply a rescaling of biological parameters which has no effect on recommended $A B C$ ranges nor does it represent a dramatic decrease in the perceived health of the stock.

[^3]Resuration of the 14 inch commercial size limit and removal of the automatic 15 inch and 16 inch increases in 1996 and 1998 are technical adjustments made necessary by delays in the processing of proposed Amendment 12, which conains similar provisions. It had been the Council's intent that the commercial 15° inch sire limit not be implemented on January 1, 1996. Since Amendment 12 will not be in effect on January 1 , the 15 inch commercial size limit will take effect, and this regulatory amendment is needed to restore the original size limit. The 1995 stock assessment notes that. in addition to hooking and handling mortaliny. predation of released fish may be important in areas with significant concentrations of large predators. The assenment furcher notes that the precise extant of release mortality is not clear. Because of this uncertainty about the level of release mortality and the potential wastage of economically valuable fish if the size limit has been set incorrectly, the Council feels that changes to the commercial size limit should not be made at this ime. Further rationale for retaining a 14 inch commercial size limit comes from Amendment 12 as follows:

Abstract

Amendment 5 created a series of biennial size limit increases that will raise the minimum size limit for red snapoer to an eventual 16 inches total length This is the size that will maximize yield per recruit and biomass vield from the stock, assuming a 33 percent release mortality, thereby benefiting the restoration program. The commercial red snapper industry feels, however, that NMFS has underestimated the release mortality from the commercial sector. The commercial fishery may fish further offshore than the recreational sector. Fast retrieval and sudden decompression associated with the use of power reels may also contribute to a higher mortality for commercially caught fish. Also, a 13 inch fish is a more desirable size for the market. The Ad Hoc Red Snapper AP recommended that the 13 inch size limit be restored. However, in the absence of positive information that release mortality is higher than assumed, there may be a greater benefit to the commercial fishery from koeping the size limit rogulation stable at 14 inches. If release mortality is higher than assumed. then the minimum size limit that produces maximum yield per recruit will be smaller.

Bindogical Impacts: The 9.12 million pound TAC represents a 52 percent increase over the 6 million pound TAC that has been in effect since 1993, but only an 18 percent increase over the actual 7.7 million pound total harvest in 1994, and less than a 4 percent increase over the peak harvest (since TACs were implemented) of 8.8 million pounds in 1993.

Virually all of the additional actual harvest will accrue to the commercial sector, which has been effectively conscrained in recem years by quon closures. For 1996, the Council has proposed, through previous action, that one million pounds of the commerial quota be harvested under a short-term extension of the red snapper endorsement system and trip limits beginning February 1, 1996. The remainder of the quon (3.65 million pounds under the proposed TAC) is to be aken through an ITQ system beginning in April. In the wrecheish ITQ on the Atlantic coast, some bolders of small share amounts have not used their shares, resuling in undertarvert of the quoe. It is therefore possible that in 1996 the commercial sector will not exceed and may underharvest their quotr.

The rearation matr, in conmast to the commercial sector, has not been effectively constrained in the past. It has excoeded ite allocation in every year that there has been a recreational allocation, in some years taking nearly double is allowed poundage. In previous years recreational harvest proposals have been based party on assumed but undocumented factors, such as a reduction in angler participation resulting from increased harvest restrictions, or on additional measures that were subsequendy disapproved, e.g., exclusion of charter/headboat cappins and crew from revining a bag limit. For 1996, the Council has proposed a combination of TAC and bag/size limits that precisely matches the projected recreational harvest to the recreational allocation, without any additional assumptions.

The bag and size limit analysis does not take into account possible increases in average size of fish caught or increased siccess rate of anglers, which could result in recreational harvest being greater than projected. In addition, NMFS has made a prelimirary projection that the 1995 recreational harvest will be 5 million pounds under the current size and bag limits. This estimate is based on partial 1995 MRFSS survey data, expanded using historical MRFSS effort estimates and ratios between Texas and headboat data and MRFSS data. However, the NMFS analysis uses uncorrected MRFSS charterboat effort data from recent years which has been called inm quesion by the Council. The red snapper stock assessment uses a 5 year running average to estimate MRFSS charterboat effort in 1993 and 1994, resuling in reduced effort and landings estimates for those years. Had the same correction been applied to the preliminary NMFS 1995 recreational harvest projection, it would have resulted in a lower estimate. Prilimianry 1995 landings data for part of that vear indicated landing levels 24 percent and 16 to 32 percent below comparable periods in 1994 for the MRFSS and Headboat survey respectively (personsel communications, Holiman and Dixon). NMFS has suggested that problems with the MRFSS effort data may stem not from overestimating recent years, but from underestimating earlier years. If true, a furure stock assessment will need to incorporate revised landings estimates which may result in a change in fuure ABC ranges. In the absence of that determination, the lower effort estimates used by the stock assessment have been accepted by the SSC as the best available scienific information. Consequently, with the information available, the presumption that the starus quo size and bag limits will constrain recreational harvest at or near it 4.47 million pound proposed allocation appears to be reasonable.

The accumprion of a 50 percent reduction in shrimp trawl bycarch of red snapper is very imporant to achieving the 20 percem SPR goal. This does not mean a 50 percent reduction in the absolute pounds or numbers of red srepper cuight but rather a rectuction in the instantaneous mortality rate associated with shrimp trawl bycatch. As such, the actual pounds or number of red snapper caught is proportional to the red snapper stock size. However, the achievability of the 20 percent SPR goal is very sensitive to achieving a shrimp bycatch reducion. A lower percemage of byouch reducion or a delay in implementation will require reduced TAC's to achieve a 20 percent SPR by 2019. At low or no bycatch reduction levels, a 20 percent SPR cannot be achieved at any level of TAC.

Extending the recovery period to the year 2019 is the result of new data indicating that red snapper are longer lived and have a longer generation time than previously thought. In general, the longer lived a species is, the longer a recovery will thes. In this regard, an extension of the recovery period is not unreasonable provided it remains within the $11 / 2$ generation time limit as specified in the FMP. As shown in Figure 20, population fecundity and year-chass recruiument in recent years has been corsistently higher than in the mid-1980's, suggesting that there is a trend for increased recruitment and a reduced chance of recruiment failure over ime as the stock

reoovers. However, a stock that is below the overfishing Figure 20. Scarergran of recruionens and popularkin threshold is by defivition vulnerable to recruiment failure, fecundiy for $M=0.10$. The 1989 poirs was omured from ine and is in danger of not being able to sustain itself. The regression. high volatility of recruiment success is vividly illustrated
in Figure 20, by examining at the large difference in recruitmem berween 1985 and 1989, two years with nearly identical population fecundities. These two years are certainly extremes within the dataset, and probably represent rare events. However, the probability of either rare event (extreme success or extreme failure) reoccuring increases as a result of increasing the ome
that the stock is allowed to remain in an overfished condition. Since each of these rare events has oniv occurred once within the eleven years of available data, it is impossible to quantitatively determine the level of potential risk (or reward). Achieving projected recruioment levels is an assumption of the model. If the projectred levels are not achieved, future reductions in TAC may be necessary. Conversely, if projected levels are exceeded, future increases in TAC may be possible.

The following analysis of the 14 inch commercial red snapper size limit is taken from Amendment 12. Note that the analysis is based on the old naural mortality rate estimate of $\mathrm{M}=0.20$. Under the new esumate of $\mathrm{M}=0.10$ the sizes corresponding to a given SPR and yield will be higher (see discussion later in this secoon):

Amendment 5 established a schedule of biennial one-inch size limit increases to raise the red snapper minimum size limit from 13 inches to 14 inches in 1994, 15 inches in 1996, and 16 inches in 1998. The 15 inch size limit for the recreational fishery was implemented in 1995, ahead of schedule, as part of a regulatory change to keep the recreational sector within its 2.94 million pound allocation.

The 16 inch size limit is within the range of sizes determined to achieve 99 percent of the maximum yield per recruit, ascurning a 33 percent release mortality of undersized fish (the size range, from figure 69 of Goodyear 1992, was about 15 19 inches). This yield per recruit was also dependent on reducing fishing mortality to a rate of about $F=0.2$. At the 1994 fishing mortality rate of $F=0.346$ for the most heavily exploited age 3 age group (from table 90 of Goodyear 1994), neither 99 percent nor 95 percent of maximum yield per recruit can be achieved at any size limit. A 90 percent yield per recruit can be achieved with sizes ranging from about $14-21$ inches, but 20 percent SPR can be achieved only at the upper end of that range (Figure 21).

Testimony from commercial fishermen suggests that release morelity may be higher than 33 percent. One person's testimony stated that historical documents from as far back as the 1870's noted that srapper caught deeper than 10 fathoms could not be kept alive in the live wells that were used during that ime period. If release mortality is higher than assumed, then the minimum size for maximum yield per recruit will be smaller. Conversely, if release mortality is lower wor the maximum age is higher than in the current assessment), the minimum size will be larger. Based on the above yield curve, a 20 percent SPR can be achieved with a 14 inch size limit provided the fishing mortalin. rate is reduced to berween $F=0.21$ to 0.28 . However, when the new biological data and natural moralin. estimates are factured in, the sock asentment esimate for the minimum size limit corresponding to maximum YPR increases from 16 to 18 inches. The RFSAP report states that the 1994 directed fishing mortality rate is estimated to be $F=0.30$. Thus, maintaining a 14 inch size limit could necessitate a reduction in TAC w achieve the recovery target.

It must be noted that the above yield curve (Figure 21) is from the 1994 stock assessment, since there was no corresponding amalysis in the 1995 assessment. Under the 1995 assumption of a lower nanural mortality rate and reduced growth rate model, a red snapper at any given size is older than previously thought (comparison of Table 3 in Goodyear 1994 with the equivalent Table 5 in Goodyear 1995). However, the relative reproducive importance of older age classes also increases, as seen in Figure 22. The RFSAP concluded that adoption of a lower rawral mortality rate simply rescaled some aspects of the assessment and did not affect ABC ranges or represent a dramatic decrease in the perceived health of the stock. upper bound of ABC recommended by the RFSAP has morialiry rates of $0.10,0.15$. and 0.20 .

Figure 22. Relative reproductive umportance of femate res: snapper by age in the unfished condinon for na:ur.a.

Economic Impacts: Ever since the advent of more restrictive management on the red snapper fishery, the never gone above 6.0 MP . The current RFSAP recommendation of an upper limit of 10 MP is 67 percent above the past upper ABC bound. In the past. the SEP consistenlly recommended that a TAC be chosen at the upper bound of the ABC (see GMFMC 1992,1993,1994). For the current ascescment, the SEP proposed a graduated TAC of 8.0 MP for 1996 and 10.0 MP for 1997. The wwoyear TAC is based on the fact that no comprehensive stock assessment will the conducted in 1996 and on the likelihood of achieving a level of shrimp trawl bycatch reduction in 1997 that is required to successfully progress along the recovery plan for the red snapper stock. The RSAP proposed a TAC similar to that proposed by the SEP and a retention of the recreational limits of 5 fish and 15 inche The SSC advised the Council that a selection of TAC at the upper end of ABC would require earlier (by 190and larger (at least 50 percent) reductions in shrimp bycatch and selection of TAC at the lower end of $A B C$ would require a reduction of the recreational harvest from levels observed in recent years. The Council ipropring a 9.12 MP TAC for 1996, with the poundage allocation to the commercial and recreational sect r determined by the prevailing $51 / 49$ commercial/recreational allocation ratio.

The proposed increace in TAC, retention of the recreational limits of 5 fish and 15 inches, retenoun commercial size limit of 14 inches, and the extension of the recovery target date would obviously result : : , increase in short-term net benefits to red snapper fishery participants. The long-term effects depent among others, such factors as the future status of stock as partly determined by current regulations ir directed fishery and reduction in mortality of juvenile red snapper incidentally caught in shrimp trawh market condition for commercially sold red snapper, and the nature and strength of both commercis recreational demand.

Commercial_Sector

The red srapper fishing season normally sarts on January 1 and ends on December 31 of every year 1991 the commercial fishery reached is quota and the fishery closed several months before December year 1992 marked the onset of a derby in the red snapper fishery when the regular season started on J 1 st and ended 53 days later. The derby continued the following years, with the fishery open for d months in 1993, 2.5 months in 1994, and 1.5 months in 1995. The 1995 season was prematurely cloxewas reopened for 36 hours the first week of November. Since 1993, the commercial fishery season ir-
has been delayed trough regulatory amendments. It opened on February 16. 1993, February 10. 1994. and Febnuary 24, 1994. These delays were intended to minimize fishing during hazardous winter weather and w enable the fishermen to take advantage of higher demand during Lent.

Since 1993. commercial harvest of red srapper has been governed by a species endorsement system. Vessels fishing with endorsement can harvest up to 2,000 pounds per day trip; the rest are limited to 200 pounds per day trip. The endorsement system was partly intended to slow down the derby fishery, but with lirie erfect as borne out by atenuated seasons over the last three years. Fishing year 1996 marks a different management regime for the commercial sector. If a proposed emergency action is approved, the season will commence on February 1, 1996 under a 1.0 MP quota. Harvest will still be governed by the endorsement system. This season closes when the quota is reached. Starting April 1, 1996, an ITQ system will take effect uniess furesalled by Congreasional action. The commercial fishery will then reopen with the remaining 1996 quota discributed as ITQ coupons to participating fishermen. The fishery remains open to the extent that there are unused ITQ couprns. Unless specified, the implementation of an ITQ system in 1996 is presupposed in the ensuing discussion of impacts on the commercial sector.

Proposed Alternatives 1, 3, and 4 have direct effects on the commercial sector. Proposed Alternative 3 would enable larger short-term benefits in the sense that a longer recovery period would entail less restricave regulations, including quotas, over the entire recovery period. The long-term prospects of this alternative depend heavily on the rapidity of stock recovery. We may expect a longer recovery period with less restrictive management to slow down the stock's recovery, and a shorter period to speed up such recovery. In either situation, the economic issue involves determining the net benefits over ime, and it is possible that the net benefits to the commercial sector over the same period may turn out to be same for both situations. We may note at this sage that the rapidity of stock recovery also depends on shrimp trawl bycatch reduction and furure recruiment. Both these aspects have been discussed in the Biological Impacts section. The imporiant issue here is that these two factors appear to be relatively extraneous to the management of the directed fishery If nothing is done on bycatch reduction, even closure of the directed fishery would not enable the stock to recover beyond the overficting level. It appears from this angle that an extension of the recovery period with concomiant less resrictive regulations may result in an increase in net benefits to the commercial fishery over the long run.

An increare in quota from 3.06 MP io 4.65 MP would undoubtedly result in an increase in short-nun producer and corsmer surpluses io the commercial sector. Granting the same assumptions on, among others, bycatch reduction and recruitment levels as those of the stock assessment model, the economic implications (at the harvest level) of the proposed increase in commercial quota, assumed to be held constant over the proposed recovery period, may be quantified. Waters (1995) developed a simple economic model to calculate the presern value of alternative commercial quotas. This analysis was presented to the SEP, and is the basis for the ensuing discuscion.

From an econamic perspective, an evaluation of alternative commercial quous entails maximization of the present value of catches over a fairly long time horizon. For regulation to be effective, catches must the reduced in the shon-term, and later may be increased when the fish population increases in size. A smaller commercial quot would yield smaller reverwes in the short-term, but would also lead to a faster realization of the benefits of a larger red smaper resource in the future made possible by faster recovery of the fish stoik Conversely, a higher quom would generate larger short-term benefits at the expense of a slower stoik recovery. Thus, the economic problem is characterized as a tradeoff in catches over time. However, the biological model for red srapper was concerned only with catches during the recovery period and did not uffer projections of the possibilities for larger catches after the biological goals had been met.

The RFSAP's recommended ABC of 6 to 10 MP corresponds to a commercial quota of 3.06 to 5.1 MP Projections of annual industry catches of red snapper were provided by Dr. Goodyear for the 1996-2020 period. A simple economic model was developed to calculate the present value of alternative commercial quoras. Intuscry-wide catches were obtained from the biological simulation model. A regression analysis of real (after adjusment for inflation), average annual ex-vessel prices against annual landings of red snapper for the 1962-1994 period generated predictions of ex-vessel prices for each quota. An estimate of the average carch of red srapper per rrip (approximarely 1,550 pounds for high-volume, hook-and-line fishermen with red snapper endorsements in the northern Gulf) was obtained from the economic survey. However, as the red snapper resource recovers and becomes more abundant over ime, it is expected that catch per trip would increase. The economic model increases catch per trip in proportion to the relative increase in the lagged young-of-the-year index as predicted from the biological simulation model. The total number of trips for red snapper was calculated as the ratio of the total commercial quota and catch per trip. Harvesting costs were calculared as the proctuct of rumbers of trips for red srapper and average variable costs per trip. Average tip costs were $\$ 800$ for high-volume, hook-and-line fishermen with red snapper endorsements. Net benetits were calculared as gross reverues minus trip coss, and did not subract fixed costs or payments for labor. Projected net present values under different scenarios are:

Projected net reaurn to vessel owner, captain and crew.
Assumptions: \quad Bycatch reduction: 5.8\% in 1993, 10\% in 1994, 1995, 1996, and 50\% in 1997 Natural mortality rate: 0.10
Discount rate: 7\%

Period	3.06 MP Quota	4.08 MP Quota	4.65 MP Quota	S.1 MP Quota
$1996-2000$	$\$ 30.2$ million	$\$ 36.1$ million	$\$ 37.8$ million	$\$ 38.6$ million
$1996-2020$	$\$ 92.5$ million	$\$ 112.0$ million	$\$ 117.9$ million	$\$ 120.7$ million

Several points need to be rised regarding the above figures. First, Waters (1995) provided net present values correspooding io TACs of 8.0 MP and 10.0 MP . Net present values for a 9.12 MP TAC were interpolated. Second, the projections aswine that an ITQ sysem is in effect throughout the projection period. Both revenues and costs were adjused to reflect one possible configuration of prices, consolidation of ITQs, and number of trips under an ITQ system. That is, prices would be relatively suble throughout the year so as to be about similar to the price configuration before the onset of more restricive management since 1990. The high volume producers would harvest most of the quotas and would increase their number of trips.

It is nor a smprise that the economic model indicated that larger, consunt quous would generate a higher net present value than would smiller, consrat quotes. Thus, the present value of a 5.1 MP quota exceeded the present values of both the 4.08 and 4.65 MP quous. Because the biological goal of a 20% ratio of spawning porenrial would mor be achicved umil starty before 2020, the long-term benefits of larger fudure catches were not predice-d The model prediced a rehatively large increace in net present value if the quota were increased from 3.06 vo 4.08 MP, and another but lesser increase if the quot were increased from 4.08 to 4.65 or 51 MP. By the ammpions of the model, each increment in the commercial quora would cause ex-vessel prices to decline and would increase the number of trips, and hence trip costs, required to harvest the quota.

While the effects of an increace in quota would likely be the dominant source of increases in benefits the commercial sector, Proposed Atrernative 4 would also "contribute" to an increase in benefits. This contribution apperss more in terms of preventing a reduction in benefits attributable to an increase in quota and not in the sense of adding benefics. The reason for this is that this alternative would merely prevent an increas in sine limit from the current 14 inches to 15 inches in 1996 and 16 inches in 1998. Such successive
increases in size limit would porentially reduce revenues since the 1 to 2 pound market size category would be lost $\boldsymbol{0}$ the fishermen. Antozi (1993) reported prices for the 1 to 2 pound category were higher than some other market sizes. In this event, revenues from larger sizes would not compensate entirely the revenue losses from the smaller size fish. In addition, the increase in size limit may increase production cost in terms of longer travel time and more labor to select legal size fish.

We may conclude from the foregoing discussion that the proposed measures would result in an increase of both short and long-term net benefits to the commercial sector.

Recreational Sector

Unlike its commercial counterpart, the recreational red snapper fishery is not closed once its allocation is reached. Bag and size limits have been the major tools used to keep this sector within its allocation. Since 1991, the recreational sector has been exceeding its allocation, initially by about 7 percent in 1991, 16 percent in 1992, 84 percent in 1993, 60 percent in 1994, and a projected 70 percent in 1995. It may pointed out here that the 1993 and 1994 recreational harvest estimates have been questioned as to their accuracy, and prelimirary data suggest 1995 landings may be lower than those in 1994. At any rate, the need then to impose additional resrictions on the recreational sector has become necessary as its allocation is increasingly exceeded every year. This need was echoed by the SEP in its 1993 report when it became known that the recreanonal sector did not appear to be constrained enough by the bag and size limit (see GMFMC, 1993). A year later rthe Council decided to reduce the recreational bag limit from 7 to 5 fish and increase the size limit from itr to 15 inches for the 1995 season. It may be noted, however, that constraining the recreational sector withinr its allocation (and the commercial sector within its quota) presupposes that the long-term benefits fromr restrictive management could outweigh short-run losses or short-run forgone benefits.r

Holiman (1995b) conducted a size and bag limit analysis on the recreational sector. His projections indicater that the current limits of 5 fish and 15 inches would result in a 4.47 MP harvest in 1996. Given this scenario.r the proposed increase in recreational allocation via an increase in TAC (Proposed Alternative 1) and ther retention of currem limis (Proposed Alternative 2) would have practically minimal effects on the recreationair sector. Previous discussion regarding the extension of the recovery period also applies here.r

While recreational bag and size limits are currendy adequate to constrain the recreational catch to its increasedr allocation, these measures may not be sufficient to address potential increases in recreational effort over ther riong run unless its allocation is also increased over time. Along this line, the SEP (GMFMC, 1994) suggestedr that a long run approach, other than bag and size limits, may need to be developed. Noting also the trend inr cauches by anglers in private and charter boat mode that indicates the growing importance of the charrer buatr mode, the SEP (GMFMC, 1995) recommended that the Council formally recognize the reef fishery in generair and red snapper in particular as being composed of three distinct sectors: commercial for food, for-hirer recreational and private recreational. This recommendation was based on the observation that the three secwrur are moivated by different sets of economic and social factors and that different management regimes for ther three sectors should result in a higher level of economic and social benefits for any particular level of wair harvest. Specific additional recommendations related to this general recommendation include: 1) sertng a control dare for entry to the for-hire secror, 2) formulating specific options to control overall effort in the furhire and private recreational sectors, and 3) requesing that the Regional Director of NMFS begin an economi.r and social research program that will provide information for Council decisions regarding effecuer management of the recreational sectors.r

Rejected_Alternatives

RED SNAPRER.TAC

Rejected_Alremarive_1: Status Quo. Retain the red snapper TAC at 6.0 million pounds.
Rejected_Altrmarive.2: Set the red snapper TAC at some level higher than 6.0 million pounds but less than 9.12 million pounds.

Rejected_Alternative_3: Set the red snapper TAC at 10.0 million pounds.

RECREATIONAI_BAG.AND_SIZE.LIMITS

Rejected Alte raive 4: Set recreational bag and size limits at a more restrictive levet than status quo.

Rejected Altemative 5: Set recreational bag and size limits at a less restrictive level than status quo.

RECOVERY TARGEI DAIE

Rejected_Altermative_6: Status Quo. Retain the 2009 target for recovery of red snapper stocks to 20 percent SPR.

COMMERCIAI_MINIMIMM.SIZE L.IMIT

Rejecred_Altrmative.7: Status Qua. Do not rature the commercial red snapper minimum size limit to 14 inches (size limit would increase to 15 inches and remain at 15 inches if Amendment 12 is approved, or increase again to $\mathbf{1 6}$ inches in 1998 if Amendment $\mathbf{1 2}$ is disapproved).

Rationale: Because all of the rejected alternaives are inter-related, they are presented and discussed in a single section. Given the current knowledge of red snapper life history and generation ime, selection of a recovery arget date must first be made. This arget date determines the range of allowable TAC. Selecion of the TAC then determines the recreational allocation and commercial quota. Finally, once the recreational and commercial allocations have been set, appropriate regulations to implement those allocations can be considered.

Recovery Targer.Dare: New biological information indicates that red snapper are longer lived than previously thought, roulting in a subsemial incrace in the generation time estimate, from 13.6 years to 19.6 years, and also a slower recovery rate than previously projected. Extending the recovery date to 2019 retains the previously emblisted $11 / 2$ gereration ime recovery ime frame. As stated in the RFSAP report, this is simply a rescaling of some of the sock assessment parameters. Retaining the starus quo arget date of 2009 would reduce the recovery ime frame 10 approximately 1 generation ime. As shown in the stock assessment's Tahie 119 (appended to this report), because of the slower proje:ted recovery rate resulting from the new biologisil parameters, none of the TAC alternatives in the stock assessment could produce 20 percent SPR by 2009 Maintaining the 2009 target date would therefore have required a decrease in TAC and possibly even a whal closure of the fishery (see biological impacts discussion), resulting in economic and social disruptions to twith the commercial and recreational sectors. For this reason, the status quo target date (Rejected Alternative o, was rejected.

Red Snapper. TAC: Under the new life history parameters and carget date, a 6 million pound TAC is more resrictive than necenary to achieve 20 percent SPR. Higher TAC levels can be implemented and still provide a greater than 50 percent probability of reaching the target (see Tables 118 and 119 from Goodyear 1995. appended to this report) while providing increased social and economic benefits to the commercial and recreational sectors. For this reason, the stanus quo TAC (Rejected Alternative l) was rejected in favor of increasing the TAC.

If TAC were increased to a level higher than 6 million pounds but less than 9.12 million pounds. increased harvest restrictions would conanue to be needed on the recreational sector to constrain it to it's allocaton. In public testimony from charter and headboat operators, the Council was told that additional recreational restrictions, particularly reductions in bag limits, would make it difficult to atract paying customers and would be derimental to the recreational fishing industry, particularly those vessels that principally target red snapper Under a 9.12 million pound TAC, the NMFS bag and size limit analysis projects that the recreational sevtor will exacty fill its allocation with no changes needed to existing bag and size limits (see Holiman 1995a. table 1, appended to thus amendment). In order to avoid these negative impacts, increasing the TAC to a level below 9.12 million pounds (Rejected Alternative 2) was rejected.

The upper limit of the ABC range recommended by the RFSAP is 10 million pounds. At this level. the RFSAP concluded that the target 20 percent SPR could still be achieved by 2019 provided that a 50 perient shrimp trawl bycatch reduction is achieved in 1997. However, under the more conservative byeatch reducoun ascumptions used in the stock assessment (37 percent reduction in 1997 and 50 percent in 1998). there is unlt a 25 percent probability of achieving the target with a 10 million pound TAC (Table 118). The Council ir currently developing an amendment to the Shrimp FMP to require bycatch reduction devices, but there $1-$ uncertainty whether a full 50 percent reduction will be achieved in 1997. A 9.12 million pound TAC provides a substantial increase in quota to the commercial sector, no need to change recreational restrictions. and s better than 50 percent probability of achieving the SPR arget even under the more conservative byatin reduction assumptions. Because substantial social and economic benefits can be accorded to both sectnrs at a 9.12 million pound TAC while avoiding the uncertainty associated with a 10 million pound TAC, the Cuunil chose to set TAC at the more conservative 9.12 million pounds, and rejected Alternative 3.

Recreariomal.Bag.and_Size_Imits: The 9.12 million pound TAC has a recreational allocation of 4.47 mill. r. pounds. This is precisely the recreational harvest that is projected by NMFS. Since there is neither need m : justification io increace or reduce recreacional harvest restrictions under this TAC, and since maintaining sid: is quo bag and size limits would provide stability in the recreational sector, the Council rejected both Reic :s: Alternaive 4 and Rejected Alternative 5 in favor of the starus quo.

Commercial Minimum Size Limit: Under Amendment 12, which was approved by the Council but in submitred io NMFS, it was the intent of the Council that the commercial red snapper size limit remain a 1994 limit of 14 inches unless a decision is made to change the limit in the furure. Due to adminus: , delays, Amentoner 12 annor be implemented before the January 1, 1996 automatic size limit increase inches alkes effece If the size limit provision of Amendment 12 is approved, it will remove automani increases, but leave the limit at the size in effect at the time of implementation. Under the sara alternative, this would be 15 inches. The Council believes, based on testimony provided by comr fishermen. that release morality in the commercial sector is higher than the 33 percent level used in the assessment. If this is true, the increased release mortality resulting from an increase in the size lir result in a lower SPR or slower recovery rate than what is indicated by the assessment. Furtherm. increaced release mortality wastes an economically valuable component of the resource. The stock asseisself noted that the release mortality estimates are not precise. The Council felt that it is important, no
to eliminate the future automatic increases, but also to restore the previous 14 inch size limit, and therefore rejected the stavis quo (Rejected Alternative 6).

Binlogical Impacts: The RFSAP repor emphasized four major assumptions on which their recommendation of ABC range was based: 1) acual shrimp trawl bycatch mortalities are not higher in 1995 and 1996 than the projected estimates, 2) the recreational sector stays within its allocation, 3) the 50 percent bycatch reduction is implemented in 1997, and 4) projected increases in recruitment are realized. Failure to meet the assumptions could result in a slower than projected recovery and future decreases in $A B C$ range.

The impacts of the rejected alternatives depends upon the validity of these assumptions. Assumption 1 is based on the best available scienific information, which suggests that shirimp bycatch reductions of 5.8 percent in 1993 and 10 percent in 1994 have occurred. Shrimp fishermen have suggested that higher bycatch reducions may have already been achieved as a result of changes in shrimping effort and area fished. Assumption ? validity is dependent on the combination of recreational allocation level and recreational measures to achieve that level, and is discussed in greater detail in the following paragraphs. In previous years the recreational harvest assumption has not been valid. Assumption 3 has previously been incorporated as an explicit part of the red srapper recovery program. The technology exists to achieve a 50 percent bycatch reduction and the Council is developing a Shrimp FMP amendment to implement that reduction. Assumption 4 is based on the validity of the sock-recruitment relationstip used in the swak assessment model. The model uses a BeverwnHolt function. This stock-recruit function was developed in the 1950's and has long been used to model recruitment of marine fish populations. However, the red snapper parameters of the Beverton-Holt function were derived from a narrow range of relatively low stock sizes. The stock assessment noted that (Goodyear 1995), "The applicability of the Beverton-Holt model, and the accuracy of its parameter estimates are uncernin, and recriument predicted from the relation at stock sizes much different than the current size of the stock should be viewed with skepticism".

At TACs below the proposed alternative (Rejected Alternatives 1 and 2) there would be a faster rate of recovery or an increased probability of achieving the recovery by the target date. However, a lower TAC would require a reduction in recreational harvest and would need to be accompanied by more restrictive recreational measures (Rejected Alternative 4). Given the failure of the recreational sector to stay within is allocation in previous years, it is likely that, at TACs lower than the Proposed Alternative, the assumption that the recreational sector stays within its allocation would fail to be met. If this were to occur, improvements in SPR would fail to occur as projected, which would lead to lower ABC ranges in future years.

Corversely, a higher TAC (Rejected Alenraive 3) would have a reduced probability of atraining the recovery arget even if all acounppors are met. However, a higher TAC would create a recreational allocation higher than the projected harvest under current bag and size limits, and would increase the probability of the recreational harves assumption being valid.

In previous rearihiry amendments to set red snapper TAC, impacts of the TAC on the commercial "derby" ype fistery and effor shifing io alternaive species during closures has been discussed. 1996 is a transitional year during whict the commercial harvest management strategy will switch from an open access fishery w an ITQ sysem. The impace of the ITQ system rather than the level of TAC will be the driving force in 1996 on paterns of effort toward red spapper and alternative species.

Reaining the 2009 arget date for red snapper recovery (Rejected Alternative 6) would necessitate reductions in TAC because of the slower recovery rate associated lower natural mortality rate and increased longevin. over previous srock asersments. Appended Table 119 shows that, with a 6 million pound TAC, there is only a 50 percens probability of the stock reaching even 9.6 percent SPR by 2009. Even under a constant fishing
morality rare scenario column H in able 119), which calls for an initial reduction in TAC to I million pounds. the 50 percent probablity level for SPR in 2009 is only 11.3 percent. Although options for a 2009 recover: target using the new life history parameters were not examined in the stock assessment, it is likely that retaining the 2009 target date would force a substantial reduction in TAC or even a total closure of all red snapper harvest.

The impact of allowing the commercial size limit to increase to 15 inches (Rejected Alternative 7) depends upon the true level of red snapper release mortality. During 1995, under a 14 inch size limit. observer data indicated that 40.7 percent of the red snapper caught by number (18.6 percent by weight) were released in the commercial fishery. Fishermen's logbook data indicated a lower release rate of 30 percent in 1995. Under the new natural mortality rate estimate of $\mathrm{M}=0.10$, the 1995 stock assessment calculates that: at 33 percent release mortality, the minimum size limit that produces maximum yield per recruit is 18 inches. This is an increase over the previous estimate of 16 inches, which was based on a natural mortality rate of $\mathrm{M}=0.20$. Note also that for the recreational fishery, which now has an assumed release mortality of 20 percent and $\mathbf{M}=0.10$, maximum yield per recruit occurs at a minimum size limit of 21 inches. Lower size limists reduce both yield per recruit and spawning potential relative to the stock assessment projections. If commercial fishing release morality is higher than 33 percent, as many fishermen suggest, the opimum size to maxumuze yield per recruit is less than 18 inches. However, the SPR projection model assumes that the size limit for all fishermen will increase to 16 inches in 1998. The proposed lower size limits and/or a determination that commercial release mortality is greater than 33 percent will require that the projections be reevaluated with the new parameters, and may result in reduced funure $A B C$ ranges.

Ecmomic Impact: The relative impacts of alternative TAC levels on the commercial sector were discussed in conjunction with impact analysis for the Proposed Alternative. The table of net present values presented above summarizes these impacts. One observation worth reiteraing here is that while an increase in TAC from 6.0 MP w 8.0 MP resulted in relatively significant increase in producer surplus, an increase from 8.0 MP to 9.12 MP or 10.0 MP resulted in relatively smaller increase in benefits.

Since the only binding restrints on the recreational sector are bag and size limits, the choice of TAC will have no direa effecto on the recreational sector unless the limits are adjusted to ensure that this sector's harvest matches with is allocation. In this sense, the choice of a TAC affects the recreational sector only through concomian adjusuments in the recreational limits. Of course, a TAC level imposes a pressure on the Council wo adjust recreational limis. The following discussion on impacts on the recreational sector considers various TAC choices and corresponding recreational limits.

Maintaining the TAC at 6.0 MP would require more restrictions on the recreational sector, if that sector is corstraned to its allocaion. Holiman's (1995b) analysis shows that this TAC requires limits of 2 fish and 15 inches or 3 fish and 16 inches. This would severely constrain the recreational sector, resulting in significant rectuctions in ander consumer surplus and for-hire vessel profits. It is likely in this scenario that some for-hire businesses, particularly in areas where red snapper is either highly targeted or caught, may cease operation entirely. In erms of orget trips, these limits would have greater impacts on the private recreational than forhire recreational anglers; in terms of catch trips, most of the impacts of these limits would befall on anglers fishing through charter boat mode (see Figures 14 and 15 for frequency distribution of trips). Reduction in catch would have the tendency to reduce trips taken by anglers so that charter boats would suffer the loss of maty cusworner trips as a consequence. The growing trend in both catch and arget trips in Alabama implies that anglers and for-hire boats in this stare would receive a greater portion of the adverse effects resulting from reductions in recreational limits. The extent would there be species substitution resulting from these very restrictive limits depends on the availability of other species. As can be gleaned from Figure 16 above, there appears to be no perceptible change in species caught together with red snapper as more regulations have been
imposed on the fishery. It is likely then under this simation, the losses in benefits due to more restrictive management may be mostly borne by participants in the red snapper fishery.

A TAC level of 8 MP , which is berween 6.0 and 9.12 MP , requires limits of 4 fish and 15 inches or 5 fish and 16 inches. The nature of this adverse effects may be expected wo similar to that of a 6.0 MP TAC. although smaller in magninde. We may note, though, that while this adverse impact may not be as large as that with a 6.0 MP TAC, only recently were recreational limits changed. For the 1995 season the bag limit was retuced from 7 to 5 fish and the size limit was increased from 14 to 15 inches. The absence of data has precluded any assessment of the effects of these changes. We may expect, nonecheless, that a turther restriction on the fishery could become substantial when viewed with respect to the pre-1995 recreational limits.

According to NMFS analysis, a 10.0 MP TAC would allow limits of 5 fish and 15 inches or 6 fish and 16 inches. The required limits are practically the same as that required under the proposed TAC of 9.12 MP A 430 thousand pound difference in recreational allocation would not allow a higher bag limit. unless accompanied by a larger size limit. considering the recreational effort in the fishery. In this sense, the effeis on the recreational sector of a 10.0 MP TAC may not significandy differ from that of a 9.12 MP TAC.

An increse in commercial size limit would mean a loss in the market for smaller size fish. To the extent that smaller fish command relaively higher prices than some larger size fish, revenues to fishermen may slighly decrease. In addition, a larger size limit may impose a relatively higher fishing cost as travel farther offshore and more tabor for discarding fish may be necessitated. Considering, however, that the commercial fishery may be under an ITQ system starting April 1, 1996, the increase in size limit may have its impact more on the revenue than on the cost side of fishing operation.

Maintenance of the current recovery period entails more restrictive management measures, even more rescrictive than current ones. In this event, the short-term adverse consequences on both the commercial and recreational sectors would be significam. Whether these losses can be more than compensated for in the long run depends on how fast the sock recovers and therefore allows less restrictive management. One key factor in this recovery is the achievement of a required bycatch reduction. While a short recovery period necessitates a more immediate achievement of bycatch reduction and probably even at higher level of reduction, the achievement of the required level of bycatch is dependent on factors more important than the recovery period. Given this scemario, there appears to be less economic risk involved with a longer recover: period and less restrictive management than with short recovery period and more restrictive management.e

Private and Public Costs

The preparation, implementaion, enforcement and monitoring of this or any federal action involves the expenditure of public and private resources which can be expressed as costs associated with the regulanons Costs associated with this specific action include:

Council coss of document preparation,
meetings, public bearings, and information
dissemination. $\$ 25.000$

NMFS administrative costs of document preparzion, meetings and review.

Law enforcement costs.
Public burden associated with permits S none
NMFS costs associated with permits S none
TOTAL $\$ 11.000$

The Council and Federal costs of document preparation are based on staff ime. travel. printing and any othere relevant items where funds were expended directly for this specific action. The proposed measures are nore expected to incur additional enforcement cost and permit cost to either the public or NMFS.

Summary and Net Impact of Proposed Action

The proposed regulatory action constixtes changes in management for red snapper in the EEZ under thee jurisdiction of the Gulf Council. The emphasis of the summary is on the expected economic impact of thee various proposed alternatives.

The proposed alternative to increase TAC from 6.0 MP to 9.12 MP is expected to result in minimal impactse on the recreational sector and significant impacts on the commercial sector. Since the selected TAC allowse recreational limits to be maintained at current levels without substantially exceeding the sector's allocation.e the proposed TAC alternative coupled with the proposed alternative to retain recreational limits would havee pracically no impacts on this sector. Because the commercial sector has been effecively constrained to itse allocation under the 6.0 MP TAC, an increase in TAC to 9.12 MP and consequently the commercial quotae to 4.65 MP would directly translate to an increase in benefits to this sector. Assuming the higher quota ise mainmined troughout the recovery period, the commercial sector is expected to generate producer surpluses malling $\$ 37$ million over five years or $\$ 117.9$ million over the recovery period. The proposed extension of the recovery period would maintain the estimated impacts of a higher TAC on both the commercial and recreational sectors. The proposed alternative to maintain a 14 -inch size limit for the commercial sector would prevent a porential reduction in revenues and very likely profits that would be generated due to an increase in quota.

The proposed regulatory action is esimated to cost the Federal government $\$ 41,000$. The proposed measurese are not expected to incur additional enforcement cost and permit cost to either the public or NMFS.

Determination of a Significant Regulatory Action

Pursuant on E.O. 12866, a regulation is considered a "significant regulatory action" if it is likely to result in a) an annual effect on the economy of $\mathbf{\$ 1 0 0}$ million or more; b) a major increase in costs or prices fore consumers, individual industries, Federal, State, or local government agencies, or geographic regions; or :) significant adverse effects on competion, employment, invesument, productivity, innovation, or on the abilire of United States-besed enterprises to compete with foreign-based enterprises in domestic or export marke ise

The enire commercial red snapper fishery had an ex-vessel value of about $\$ 6.2$ million in 1994 . There 1 , currently no adequate measure of the recreational red snapper fishery impacted by the proposed regulaonn but the estimated impacts of the proposed regulation are relaively small relative to the $\mathbf{S} 100$ million a vesre benchmark. Thus, given the size of the fishery and the segment of the fishery directly affected by the proposed regulation, it is concluded that any revenue or cost impacts on the fishery would be significandy le.. than $\mathbf{\$ 1 0 0}$ million annually.

Since the TAC level is proposed to be increase by 52 percent, there is expected to be major increases in revenues and profis to the commercial sector. Commercial cost of fishing operation remains largely unaffected especially if the ITQ system is implemented in 1996. Prices to consumers may slighty decrease as a result of an increase in quota. The recreational for-hire sector remains unaffected by the increase in recreasional allocation and retention of size and bag limits. As can be gleaned from the cost esamates. there are no major increases in cost to the Federal, State, or local government agencies. In fact the cost incurred by these agencies are only those that are directly related to the formulation of the proposed regulation. Since the proposed regulation has no adverse effects on the commercial and for-hire sectors. any of the sub-items nunder item (c) above would not apply.n

Based on the foregoing, it is concluded that this regulation if enacted would not constinte a "significantn regulatory action" under any of the criteria enumerated above.n

Initial Regulatory Flexibility Analysis

Iniroduction

The purpuse of the Regulatory. Elexibilig_Act (RFA) is to relieve small businesses, small organizations. a u small govemmental entities from burdensome regulations and record keeping requirements. The category it small entities likely to be affected by the proposed plan amendment is that of commercial and for-hure husinesves currendy engaged in the reef fish fishery. The impacts of the proposed action on these entivies hav:been discusced above. The following discussion of impacts focuses specifically on the consequences of the proposed action on the mentioned business entities. An Initial Regulatory Flexibility Analysis (IRFA) is contured io primarily determine whether the proposed action would have a "significant economic impait in a subsonmial mumber of small entities." In addition to analyses conducted for the Regulatory Impact Revien (RIR), the IRFA provides an estimate of the number of small businesses affected, a description of the smail businesces affected, and a discussion of the narure and size of the impacts.

Determination_of.Siqnificant.Economic.Impact.on.a.Substantial_Number.of.Small_Enrities

In general, a "subsenial mumber" of small entities is more than 20 percent of those small entivies engaged :n the fishery (NMFS, 1992). In 1992, a ootal of 2,195 permits were issued to qualifying individuals and araihes 10 verseis, and are deemed to comprise the reef fish fishery in the U.S. Gulf of Mexico. There are curreni. 1.532 active permits. Others are in the process of being renewed. The Small Business Administration (SB A defines a small business in the commercial fishing activity as a firm with receipts of up to $\$ 2.0$ mi:. annually. SBA also defines a small business in the charrer boat activity as a firm with receipis up on 5 : million per year. There are about 838 charter boas and 92 party boass operating in the Gulf. Practical., , current participants of the reef fish fishery readily fall within such definition of small business. Sinuproposed action will affect practically all the current participants, the "substanial number" criterion u met. This paricular conclusion abstracts from any other measures to be adopted for the reef fish fishe

Economic impacts on small business entities are considered to be "significant" if the proposed action \sim result in any of the following: a) reduction in annual gross revenues by more than 5 percent; b) incres notal costs of protuction by more than 5 percent as a result of an increase in compliance cosss; c) comf. coss as a percent of sales for small entities are at least 10 percent higher than compliance costs as a r of mes for large entities; d) capital costs of compliance represent a significant portion of capital availssmall entities, considering internal cash flow and external financing capabilities; orre) as a rule of thu:percent of small business entities being forced to cease business operations (NMFS, 1992).

The increase in TAC and therefore in commercial quota will increase gross revenues to commercial red snapper vessels by more than 5 percent. Charter and head boat operators may not experience increases in gross revenues. Under the proposed regulation, both the commercial and recreational sector will not incur increases in production cost (item b) or increases in cost to comply with the regulation (items c and d). Considering that the impacts of the proposed regulation are determined to be posiuve. none of the exisung businesses may cease operation as a result of the regulation.

Based mainly on the impacts on gross revenues on commercial fishermen, the proposed measures in this regulatory amendment may be regarded as effecting a significant economic impact on a substantial number of small entities. An IRFA is required and the following sections comprise the remainder of this IRFA.

Explanation of Why the_Acrion is Being_Considered

Refer to the section on Purpose and Need for Action.

Objecrives.and_Legal_Basis.for_me_Rule

Refer to the section on Management Objective and Optimum Yield. The Magnuson Fishery Conservation and Management Act of 1976 provides the legal basis for the rule.

Demogrophic Analysis

Refer to the Reef Fish Fishery Management Plan, as amended particularly by Amendments 1, 5, and 8.

Cor_Amlysis

Refer to the Economic Impacts section of the RIR.

Comperitive_Effects_Analysis

The inchusty is composed enirely of small businesses (harvesters and charner boats operations). Since no large businesses are involved, there are no disproportional small versus large business effects.

Identification.of Overlapping-Regulations

The proposed action does not create overlapping regulations with any state regulations or other federal laws.

Conclusion

It has been demined dat this regulation, if enacted, results in significant economic impacts on a substannal cumber of mall entities, mainly because of the increase in gross revenues to the commercial harvest sector The foregoing information and perimen portions of the RIR are deemed to satisfy the analysis required under the RFA.

11. ENVIRONMENTAL ASSESSMENT

Environmental Consequences

Physical_and_Human_Environmeny: The actions proposed in this amendment will have no impact on the physical environment. The increase in the TAC will allow a 52 percent increase in the commercial quota for 1996, which will benefit the initial recipients of red snapper ITQ shares under the proposed ITQ program. The proposed TAC will also establish a recreational allocation at a level that is consistent with the projected harvest under the existing recreational bag and size limits, making increased restrictions on the recreational sector unnecessary. Had increased restrictions been needed, there would have been a decreased ability of recreational for-hire boats to atract customers. The proposed actions avoid this negative impact . and furthermore, provides stability in the recreational red snapper regulations for at least one more year.

Eishery Resource:- The actions proposed in this amendment are consistent with the Council's objective of rebuilding the overfished red snapper sock within one and a half generation times. The proposed TAC of 9.12 million pounds is more conservative than the 10 million pound upper limit of the $A B C$ range recommended by the RFSAP, reflecting a risk averse approach by the Council in the face of uncertainty about implementation of shrimp bycatch reduction. Detailed analysis on the impacts of the proposed and rejected altermaives can be found in the biological impacts discussion under the alternatives and is included herein by reference.

Effect.an.Endangered_Species.and_Marine_Mammals: The NOAA will conduct a consulation under Section 7 of the Endangered Species Act. A consulation was previously conducted regarding the impact of Amendment I which included the framework measures under which this action is being aken. A biological opinion resulting from that consulation found that neither the directed fisheries nor the proposed actoon jeopardize the recovery of endangered or threatened species or their critical habitat.

Effecton_Wetlands: The proposed action will have no effect on flood plains, wetlands, or rivers.
Mitigaing-Measures: - No mitigating measures related to the proposed action are necessary because there are no harmful impacts to the environment.

Unavoidable_Adverce_Affect: The proposed action does not create unavoidable adverse affects.
Imancaible_andirmerievable on momiment of resources: There are no irreversible commitments of resources caused by implementation of this amendment.

Finding of No Significant Environmental Impact

The proproed amendment is not a major action having significant impact on the quality of the marine or human environment of the Gulf of Mexico. The proposed action is an adjusument of the original regulations of the FMP under the framework procedure set forth in Amendment 1 to rebuild overfished reef fish stocks. The propored action should not result in impacts significandy different in context or intensity from those described in the environmenal impact satement and environmental assessment published with the regulations implementing the FMP and Amendment 1.

Having reviewed the environmental assessment and available information relative to the proposed actions. I have determined that there will be no significant environmental impact resuling from the proposed actions Accordingly, the preparation of a formal environmental impact statement on these issues is not required for this amendmem by Secion 102(2)(c) of the National Environmental Policy Act or its implementing reguiacons

Approved:

12.e OTHER APPLICABLE LAWe

Habitat Concerns

Reef fish habitats and related concerms were described in the FMP and updated in Amendments 1 and 5. The actions in this regulatory amendment do not affect the habitat.

Vessel Safety Considerations

A derermination of vessel safery with regard to compliance with 50 CFR 605.15(b)(3) has been requested from the U.S. Coast Guard. Actions in this regulatory amendment are not expected w affect vessel safety.

Coastal Zone Corsistency

Section 307(c)(1) of the Federal Coastal Zone Management Act of 1972 requires that all federal activities which directly affect the coastal zone be consistent with approved state coastal zone management programs to the maximum extent practicable. The proposed changes in federal regulations governing red snapper in the EEZ of the Gulf of Mexico will make no changes in federal regulations that are inconsistent with either existing or proposed state regulations.

While it is the goal of the Council to have complemenary management measures with those of the states. federal and stare adminiscrative procedures vary, and regulatory changes are unlikely to be fully instimuted at the same ime.

This regulatory amendment is consistent with the Coastal Zone Management programs of the states of Alatama, Florida, Lowisiana, and Mississippi to the maximum extent possible; Texas does not have an approved Coasal Zone Maragement program. This determination has been submitted to the responsible state agencies under Section 307 of the Coastal Zone Management Act administering approved Coastal Zone Management programs in the states of Alabama, Florida, Mississippi, and Louisiana.

Paperwork Reduction Act

The purpose of the Paperwork Rectuction Act is to control paperwork requirements imposed on the public by the Federal Govermment. The authority to manage information collection and record keeping requirements is vested with the Director of the Office of Management and record keeping requirements is vested with the Director of the Office of Management and Budget. This authority encompasses establishment of guidelines and policies, approval of information collection requests, and reduction of paperwork burdens and duplications.

The Council does not propose, through this regulatory amendment, to establish any reporong requirements or burdens.

Federalism

No federalism issees have been identified relative to the actions proposed in this regulatory amendment Therefore, preparation of a federalism assessment under Executive Order 12612 is not necessary.

13. SCIENTIFIC RESEARCH AND DATA NEEDS

Biological Needs

The following scientific research and data needs have been idenified by the Reef Fish Stock Assessment Panel
1.e Foremor, age surdies need to be conducted both for evaluating growth rate of red snapper and to develope age-length keys for analyzing catch distributions by age. It is of paramount imporance that representagvee samples of catches are aged on an ongoing basis to calculate growth rates and age-length keys. Stocke assessment using VPA techniques is very sensitive to accurate estimates of catch-at-age.e
2.e The next sock assessment for red snapper should include analysis of how to make the transition from d constant TAC policy to a constant F policy without having to reduce current harvest levels.e
3.e Determination of the age-specific rate of natural mortality of the red snapper population.e

In addition to the above recommendations of the RFSAP. it should be noted that the new biological parameters for red snapper resulted in a sock assessment that shows the recovery to be slower than previously projected This conflicts with anecdoal information from fishermen, which suggests that the recovery is occurring faster than projected. Reasons for this discrepancy should be evaluated. Some possible hypothesis are:

1) The amount of shrimp bycatch reduction that has already been achieved may be higher than currentive estimated.e
2)e Fishermen have noted small groups of large red snapper on the mud flats. The number of fish as eache location is too small for commercial vessels to go after, leading some fishermen to suggest that these mat constitute a population of larger and older fish that are unavailable to the fishery and have been anaccounteie for in the stock assessment, but contribute to the spawning population.e
3)e The stock assessment noted that the validity of the Beverton-Holt stock-recruit function and its calcuistrie parameters must be viewed with skepticism outside of the range of observed stock abundance.e
2) The ability and ease of fishermen to locate and harvest red snapper may be a poor indicator of the hes:of the stock due to echnological improvements in fish finding and navigation gear. Furthermore, the incres cue restrictions on red snapper harvest may be discouraging new entrants into the commercial fishery, restr \therefore.e in the average fisherman having a greater level of experience than in earlier years.e

Socioeconomic Needs

The following scienific research and data needs have been idenified by the Socioeconomic Assessment i, .
1.e Demand models associated with this fishery should be estimated using more recent monchly timee. darae
2.e Supply models should be estimated using the results of the completed survey of the commer...e fishery.e
3. Modeling resuls based on the survey of the commercial reef fishery should be presented at the SEP's next meering on reef fish.
4. The SEP recommends that an attempt be made to look at species substiation in both the commercial and recreational fisheries.
5. New York wholesale price information should be examined to further investigate price flucruations and price by market size categories.
6. Social and demographic information on the participants of Gulf of Mexico reef fish fishery.
7. Estimate separate demand models private recreational and for-hire sector.

14.0 REFERENCESo

Antozzi, William. 1993. Memorandum for Richard Raulerson on the subject of red snapper price system • SERO/NMFS. 9450 Koger Boulevard, St. Petersburg, Florida 33702.

GMFMC. 1995. Report of the socioeconomic panel meeting on reef tish. Gulf of Mexico Fisher: Management Council, Tampa, Florida. 17 p.

GMFMC. 1994. Report of the socioeconomic panel meeting on reef fish. Gulf of Mexico Fishery Management Council, Tampa, Florida. 8 p.

GMFMC. 1993. Report of the socioeconomic panel meeting on reef fish. Gulf of Mexico Fisher: Management Council, Tampa, Florida. 9 p.

Goodyear, C. P. 1989. Spawning stock biomass per recruit: The biological basis for a fisheries management tool. ICCAT working document: SCRS $/ 89$ /82. Available from National Marine Fisheries Service. Southear Fisheries Center, Miami Laborawry, Coastal Resources Division, 75 Virginia Beach Drive, Miami. Forida 33149.

Goodyear, C. P. 1992. Red snapper in U.S. waters of the Gulf of Mexico. Contribution: MIA 91/91-170. National Marine Fisheries Service, Southeast Fisheries Center, Miami, Florida. 156 p.

Goodyear, C. P. 1994. Red snapper in U.S. waters of the Gulf of Mexico. Contribution:MIA 93/94-63. National Marine Fisheries Service, Southeast Fisheries Center, Miami, Florida. 150 p.

Goodyear, C. P. 1995. Red snapper in U.S. waters of the Gulf of Mexico. Contribution:MIA 95/96-05 National Marine Fisheries Service, Southeast Fisheries Center, Miami, Florida. 171 p.

Holiman, S.G. 1995a. Reef fish economic ascessment for the Gulf of Mexico recreational fishery. NMFS/SERO, St. Petersburg, FL. 12 p.

Holiman, S.G. 1995b. Recreational catch and effort for red srapper and other reef fish species. Staff Report, Division of Economic Trade Analysis, NOAA, NMFS, Southeast Regional Office, 9450 Koger Boulevard, St. Petersburg, FL 33702.

Waters, J. R. 1995. Economic assessment of the commercial reef fishery in the U.S. Gulf of Mexico SERO/NMFS, NOAA. 9450 Koger Boulevard, St. Petersburg, Forida 33702.

15.0 PUBLIC REVIEWo

A public tarring io obain public comments on this regulatory amendment was held during the Gulf Council meeting in November 1995 in New Orleans, Louisiana. Copies of this document may be obtained from the Gulf of Mexico Fishery Management Council office, 5401 West Kennedy Boulevard, Suite 331, Tampa. Florida 33609, (813)228-2815.

LIST OE AGENCIES CONSINTIED

Gulf of Mexico Fishery Management Council's-Reef Fish Stock Assessment Panel-Socioeconomic Panel
-Standing and Special Reef Fish Scientific and Statistical Commitree-Red Snapper Advisory Panel
National Marine Fisheries Service
-Southeast Regional Office
-Southeast Fisheries Science Center
RESRONSIBLEAGENCY:
Gulf of Mexico Fishery Management Council
Lincoln Center, Suite 331
5401 West Kennedy Boulevard
Tampa, Florida 33609
(813)228-2815
LISI_OE_EREPARERS
Gulf of Mexico Fishery Management Council

- Steven Atran, Population Dynamics Statistician
- Antonio Lamberte, Economist

Table 118. Estimated probability distribujions of SPR in the year 2019 for Gulf of Mexico red snapper for several management alternatives for a post-bycatch namral mortality rate of 0.10 (from Goodyear 1995).

	CASE							
P	A	B	c	0	E	F	\checkmark	H
0.99	0.122	0.086	0.211	0.195	0.179	0.166	0.105	0.205
0.98	0.122	0.085	0.213	0.197	0.182	0.150	0.112	0.205
0.97	0.122	0.085	0.213	0.198	0.184	0.152	0.119	0.205
0.96	0.122	0.086	0.213	0.198	0.184	0.156	0.120	0.205
0.95	0.122	0.086	0.216	0.198	0.184	0.156	0.122	0.205
0.80	0.122	0.087	0.215	0.209	0.187	0.158	0.127	0.205
0.85	0.122	0.088	0.216	0.201	0.188	0.161	0.132	0.205
0.80	0.122	0.088	0.216	0.202	0.190	0.163	0.136	0.205
0.75	0.122	0.089	0.217	0.203	0.191	0.166	0.160	0.205
0.70	0.122	0.089	0.218	0.206	0.192	0.168	0.163	0.205
0.65	0.122	0.090	0.218	0.205	0.193	0.169	0.165	0.205
0.60	0.122	0.090	0.218	0.205	0.196	0.171	0.167	0.205
0.55	0.122	0.090	0.219	0.206	0.195	0.172	0.150	0.205
0.50	0.122	0.091	0.219	0.207	0.196	0.176	0.152	0.205
0.65	0.122	0.091	0.220	0.207	0.196	0.175	0.156	0.205
0.60	0.122	0.092	0.220	0.208	0.197	0.177	0.156	0.205
0.35	0.122	0.092	0.220	0.209	0.198	0.178	0.157	0.205
0.30	0.122	0.092	0.221	0.209	0.199	0.179	0.160	0.205
0.35	0.122	0.092	0.221	0.210	0.909	0.181	0.162	0.205
0.20	0.122	0.093	0.222	0.210	0.201	0.182	0.163	0.205
0.15	0.122	0.093	0.222	0.211	0.201	0.183	0.166	0.205
0.10	0.122	0.096	0.223	0.212	0.203	0.185	0.168	0.205
0.05	0.122	0.095	0.226	0.213	0.206	0.188	0.173	0.205
0.06	0.122	0.095	0.226	0.216	0.205	0.189	0.176	0.205
0.03	0.122	0.096	0.226	0.216	0.206	0.190	0.175	0.205
0.02	0.122	0.096	0.225	0.215	0.207	0.191	0.17	0.205
0.01	0.122	0.096	0.225	0.216	0.207	0.193	0.179	0.205

Definitions of Cases
A Mo harvest, no reduction in shrimp byeateh.
B 2722 tome (6 million pound) TAC, no reduction in shrimp byeateh.
C 2722 (6 aillion pound) TAC, 5.8x reduction in shrimp bycateh in 1993. 10\% in 1996, 268 in 1996, 378 in 1997 and 508 in 1998

D 3629 (8 aillion pound) TaC, 5.82 reatration in ahriep bycatch in 1993, 102 in 1996. 262 in 1996,372 in 1997 and 508 in 1998

E 4536 (10 aillion pound) TAC, 5.82 reduction in shrimp byeateh in 1993, 108 in 1996, 268 in 1996,378 in 1997 and 508 in 1998

F 5653 (12 aillion pound) TAC, 5.82 reduction in shrimp byeateh in 1993, 10\% in 1996, 268 in 1996, 372 in 1997 and 50% in 1998

G 6359 (16 aillion pound) TAC, $5.8 x$ reduction in shrimp byeateh in 1993, 10% in 1996, 262 in 1996, 378 in 1997 and 50% in 1998

H Constant f, 5.8x raduction in shrimp bycateh in 1993, 10% in 1996, 26% in 1996, 37% in 1997 and 508 in 1998.

Table 119. Estimated 50 th percenile of the probability distribution of SPR by year for Gulf of Mexico red srapper for several management alternaives for a post-bycatch narural mortality rate of 0.10 (from Goodyear 1995).

	CASE							
Year	A	8	C	0	E	F	G	H
1995	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
1996	0.008	0.006	0.006	0.006	0.006	0.006	0.006	0.007
1997	0.011	0.007	0.007	0.006	0.006	0.005	0.005	0.010
1998	0.016	0.008	0.008	0.007	0.007	0.005	0.005	0.012
1999	0.018	0.010	0.010	0.009	0.007	0.006	0.005	0.016
2000	0.023	0.012	0.013	0.011	0.009	0.006	0.005	0.021
2001	0.028	0.015	0.017	0.016	0.011	0.008	0.006	0.027
2002	0.03	0.018	0.022	0.018	0.015	0.010	0.007	0.036
2003	0.061	0.021	0.029	0.026	0.020	0.016	0.009	0.043
2006	0.047	0.025	0.037	0.031	0.026	0.018	0.013	0.053
2005	0.056	0.029	0.067	0.039	0.033	0.026	0.017	0.066
2006	0.060	0.033	0.058	0.049	0.042	0.030	0.022	0.076
2007	0.067	0.037	0.070	0.060	0.052	0.038	0.028	0.088
2008	0.073	0.062	0.083	0.072	0.063	0.048	0.035	0.100
2009	0.079	0.067	0.096	0.084	0.075	0.058	0.063	0.113
2010	0.085	0.051	0.110	0.097	0.087	0.068	0.052	0.125
2011	0.091	0.056	0.123	0.111	0.100	0.080	0.062	0.136
2012	0.096	0.061	0.137	0.126	0.113	0.091	0.072	0.168
2013	0.100	0.066	0.150	0.137	0.125	0.103	0.083	0.158
2016	0.105	0.070	0.163	0.150	0.138	0.116	0.096	0.168
2015	0.109	0.075	0.175	0.162	0.150	0.128	0.106	0.177
2016	0.113	0.079	0.187	0.176	0.162	0.140	0.117	0.185
2017	0.116	0.083	0.199	0.186	0.176	0.151	0.129	0.192
2018	0.119	0.087	0.209	0.197	0.185	0.163	0.160	0.199
2019	0.122	0.091	0.219	0.207	0.196	0.176	0.152	0.205
2020	0.125	0.096	0.229	0.216	0.206	0.184	0.163	0.211

Definitions of Cases

A Mo harvest, no reduction in shrimp bycatch.
B 2722 tone (6 million pornd) TAC, no recuction in shrimp byeatch.
c 2722 (6 billion pourd) TAC, 5.8\% recuetion in shrimp bycatch in 1993, 10\% in 1996, 26\% in 1996. 37% in 1997 and 50% in 1998

D 3629 (8 billion pound) TAC, 5.8% recuetion in shrimp byeateh in 1993, 10\% in 1996, 26% in 1996, 37% in 1997 and 50% in 1998

E 6536 (10 aillion ponds) TAC, 5.8\% recuetion in shrimp byeateh in 1993, 10\% in 1996, 26% in 1996 , 37% in 1997 and 50% in 1998

F 5653 (12 aillion pound) TAC, 5.8% reduction in shrimp byeatch in 1993, 10\% in 1996, 268 in 19%, 378 in 1997 and 508 in 1998

G 6359 (16 million pound TAC, 5.8x reduction in shrimp bycatch in 1993. 10\% in 1996, 26% in 19%, 37% in 1997 and 508 in 1998
w Constent f, 5.8\% reduction in shrimp bycatch in 1993, 10\% in 1996, 26\% in 1996, 37% in 1997 and 508 in 1998.

Source：Table 1 from Holiman 1995

AN二 ミ：ここ：こルここs．				
HEADBQAT／CHAREERBOA：				ごいここいここ
E．S ここMET	Sこここ：こMご	BAG ：ZM：－	ミこここ：こルご	
5	$\therefore 5$	ミ	：	4． 46
4	15	4	$\therefore \geq$	4． $2:$ ；
2	：	E	$: 三$	$3 . \div \#$ ：
5	$\therefore 5$	2	：	2． $3: \%$
3	： 5	3	：5	2．4．3
$=$	： 5	4	：	3．$: 2=$
4	15	$=$	：	こ．こここ
2	： 5	3	$: 5$	$3 .: 2$
3	：	2	$: 5$	3．ごき
2	$: 5$	2	：	2．- －
5	10	5	：0	＋ $2: \geq$
5	16	4	ió	3．－3：
4	16	4	10	3．0こ：
3	16	5	16	3.600
5	16	3	16	3．5：？
2	16	5	16	3．3：5
5	16	2	16	3．：04
3	16	3	16	3.098
2	16	4	：6	3．2\％
4	16	2	10	2． 384
2	16	3	16	こ．3：
3	16	2	10°	2．-53
2	16	$=$	16	2.450
5	15	5	16	4．こここ
4	15	4	16	3．-26
5	15	3	16	3．$\because=$
5	15	2	16	3．232
3	15	3	16	3．269
2	15	4	16	3． $2:=$
4	15	$=$	20	3．：32
2	15	3	$: 6$	2.337
3	15	2	i 6	2． $2:$ \％
5	17	5	17	3．392
5	17	4	$: 7$	$3.2:$
5	17	3	$: 7$	2．3？
4	17	3	：	2． $3: \%$

[^0]: ravo

 : The contered 1991 quoce, using the revised conversion factor, was 8.8 million pounds. The corrected 1990 ectual harvest was 7.6 million pounds. 0

[^1]: ${ }^{3}$ Thus allocanco ravo in terms of weight is 51 perowat commerciai and 49 perceat recrmuonal, baed on the andings dan connumed in Ameodmeat 1 . Table 8 .

[^2]:

[^3]: ${ }^{5}$ In the 1991 Regulatory Amendmare for Seting the 1991 Red Snapper Toul Allowable Catch, the Council considered TAC, nanging from 3 to 5 million pound, and adoped a 4 million pound TAC. For 1992. TAC was nor respecified and remaned at a million pound. For the 1993, 1994, and 1995 mans. TAC wes aet and mainnined as the upper ABC limit of 6 million pounds

